Differential (Mathematik)

Ein Differential (oder Differenzial) bezeichnet in der Analysis den linearen Anteil des Zuwachses einer Variablen oder einer Funktion und beschreibt einen unendlich kleinen Abschnitt auf der Achse eines Koordinatensystems.[1][2] Historisch war der Begriff im 17. und 18. Jahrhundert der Kern der Entwicklung der Infinitesimalrechnung. Ab dem 19. Jahrhundert wurde die Analysis durch Augustin Louis Cauchy und Karl Weierstraß auf der Grundlage des Grenzwertbegriffes mathematisch korrekt neu aufgebaut, und der Begriff des Differentials verlor für die elementare Differential- und Integralrechnung an Bedeutung.

Besteht eine funktionale Abhängigkeit mit einer differenzierbaren Funktion , dann lautet der grundlegende Zusammenhang zwischen dem Differential der abhängigen Variablen und dem Differential der unabhängigen Variablen

,

wobei die Ableitung von an der Stelle bezeichnet. Anstelle von schreibt man auch oder . Diese Beziehung lässt sich mit Hilfe partieller Ableitungen auf Funktionen mehrerer Variablen verallgemeinern und führt dann auf den Begriff des totalen Differentials.

Differentiale werden heute in verschiedenen Anwendungen in unterschiedlicher Bedeutung und auch mit unterschiedlicher mathematischer Strenge verwendet. Die in Standardschreibweisen wie für Integrale oder für Ableitungen auftretenden Differentiale werden heutzutage üblicherweise als bloßer Notationsbestandteil ohne eigenständige Bedeutung angesehen.

Eine rigorose Definition liefert die in der Differentialgeometrie verwendete Theorie der Differentialformen, wo Differentiale als exakte 1-Formen interpretiert werden. Einen anders gearteten Zugang vermittelt die Nichtstandardanalysis, die den historischen Begriff der Infinitesimalzahl wieder aufgreift und im Sinne der modernen Mathematik präzisiert.

  1. Jürgen Schmidt: Basiswissen Mathematik. Springer-Verlag, 2014, ISBN 978-3-662-43545-8, S. 307.
  2. eingeschränkte Vorschau in der Google-Buchsuche

Differential (Mathematik)

Dodaje.pl - Ogłoszenia lokalne