Die Hilbert-Transformation ist in der Funktionalanalysis, einem Teilgebiet der Mathematik, eine lineare Integraltransformation. Sie ist nach David Hilbert benannt, welcher sie Anfang des 20. Jahrhunderts bei Arbeiten am Riemann-Hilbert-Problem für holomorphe Funktionen formulierte. Erstmals explizit benannt wurde sie 1924 von Hardy basierend auf Arbeiten von Erhard Schmidt und Hermann Weyl. Ihre Anwendung erzeugt die zu einer reellen Funktion gehörende imaginäre Funktion mit Hilfe einer Faltung mit dem sog. Cauchy-Kern.
Sie wird im Bereich der Fourier-Transformation und der Fourieranalyse angewendet. Weitere Anwendungsgebiete liegen im Bereich der Signalverarbeitung, bei der sie dazu dient, aus einem reellen Signal ein analytisches Signal bzw. ein monogenes Signal zu bilden. Charakteristisch ist die allgemeine Phasenverschiebung des Imaginärteils gegenüber dem Realteil um π/2 bzw. 90°.