Irrationale Zahl

steht für die Menge der irrationalen Zahlen[1]
Die Zahl (Pi) zählt zu den bekanntesten mathematischen Konstanten.
Die Zahl ist irrational.

Eine irrationale Zahl ist eine reelle Zahl, die keine rationale Zahl ist. Kennzeichen einer irrationalen Zahl ist also, dass sie nicht als Quotient zweier ganzer Zahlen darstellbar ist. In der Dezimalschreibweise werden irrationale Zahlen mit einer nicht periodischen, unendlichen Anzahl von Dezimalstellen dargestellt (z. B. 0,10110111011110…), d. h., sie sind unendliche nichtperiodische Dezimalbrüche.

Umgangssprachlich assoziiert man mit irrational etwas, was gegen die „Ratio“, also gegen die Vernunft gerichtet ist. Der Ausdruck irrationale Zahlen bezieht sich jedoch auf den Begriff „Ratio“ im Sinne von Verhältnis zweier Zahlen.[2]

Bekannte irrationale Zahlen sind die Eulersche Zahl und die Kreiszahl , die darüber hinaus transzendent sind. Auch die Quadratwurzel aus Zwei und das Teilungsverhältnis des Goldenen Schnitts sind irrationale Zahlen.

  1. Für die Menge der irrationalen Zahlen gibt es kein eigenes Kürzel, aber eine Zahl ist genau dann irrational, wenn sie reell und nicht rational ist. Es gilt also:
    Menge der irrationalen Zahlen := Menge der reellen Zahlen ohne Menge der rationalen Zahlen.
  2. Jürgen Koch, Martin Stämpfle: Mathematik für das Ingenieurstudium. 4. Auflage. Hanser, 2018, S. 29.

Irrationale Zahl

Dodaje.pl - Ogłoszenia lokalne