Koordinatensystem

Zahlenstrahl (oben), ebene kartesische Koordinaten (unten)
  a b c d e f g h  
8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
  a b c d e f g h  

Die Felder des Schachbretts werden mit einem Zahlen-Buchstaben-Paar bezeichnet.

Ein Koordinatensystem dient dazu, Punkte mit Hilfe von Zahlen, den Koordinaten, in eindeutiger Weise zu beschreiben. Die einfachsten Beispiele sind ein Zahlenstrahl und kartesische Koordinaten in der Ebene. Im ersten Fall wird einem Punkt einer Gerade eine reelle Zahl zugeordnet. Im zweiten Fall wird ein Punkt in der Ebene durch zwei reelle Zahlen beschrieben.

Bei räumlichen Gebilden sind drei Koordinaten erforderlich, bei raum-zeitlichen Gebilden vier.

Die Position eines Punktes im Raum kann in verschiedenen Koordinatensystemen dargestellt werden. Dabei wird die Position durch Koordinaten ausgedrückt. Je nach verwendetem Koordinatensystem hat derselbe Punkt unterschiedliche Koordinatenwerte.

Der Begriff Koordinate – in der Bedeutung „Lageangabe“ – wurde im 18. Jahrhundert aus dem Wort Ordinate (Senkrechte) gebildet.[1]

Koordinaten werden in verschiedenen Bereichen der Mathematik und Physik unterschiedlich bezeichnet. So heißen die Koordinaten eines Elements (Vektors) eines endlichdimensionalen Vektorraums seine Komponenten, die Koordinaten in einem Produkt von Mengen sind die Projektionen auf einen der Faktoren. Oft gibt es zahlreiche Möglichkeiten, ein Koordinatensystem einzuführen. Beim Beispiel des Zahlenstrahls hat man beliebig viele Möglichkeiten einen Punkt auszuwählen, dem die Koordinate 0 zugeordnet werden soll. In der Ebene ist die Situation sogar noch komplizierter. Selbst nach Wahl eines Punktes, der die Koordinate erhält, lässt sich jedes (verschiedene) Paar von Zahlenstrahlen durch diesen Punkt als Koordinatenachsen wählen.

Je nach Beschaffenheit der Menge, auf der man ein Koordinatensystem wählen möchte, benötigt man auch mehr als ein oder zwei Koordinaten. Die geordnete Menge der Koordinaten wird meist als ein n-Tupel bezeichnet. Der Punkt des Zahlenstrahls mit der Koordinate 0 und der Punkt der Ebene mit den Koordinaten beziehungsweise der ausgezeichnete Punkt einer Menge, dessen Koordinaten alle 0 sind, wird als Koordinatenursprung (kurz: Ursprung) bezeichnet.

Neben den weit verbreiteten kartesischen (rechtwinkligen) Koordinaten gibt es auch andere Arten, Koordinatensysteme zu definieren. Möchte man beispielsweise auf der Kreisfläche Koordinaten einführen, so würden sich Polarkoordinaten anbieten. Der Kreismittelpunkt wäre dann der Ursprung und jeder Punkt der Kreisfläche würde durch Angabe der Entfernung vom Mittelpunkt und eines Winkels eindeutig beschrieben. In diesem Fall lässt sich im Vergleich zu den kartesischen Koordinaten nur eine der beiden Koordinaten als Länge interpretieren. Ein anderes Beispiel ist das eines Schachbrettes. Hier wird eine Kombination aus Buchstaben und natürlichen Zahlen genutzt, um die Felder des Brettes zu benennen.

In vielen Situationen ist es unmöglich, hinreichend sinnvolle und bequeme globale Koordinaten auf der gesamten Menge einzuführen. Zum Beispiel können die Punkte einer Kugeloberfläche, anders als die einer Ebene, nicht in eine kontinuierliche Eins-zu-Eins-Korrespondenz mit Zahlenpaaren gebracht werden. Daher wurde das Konzept der lokalen Koordinaten eingeführt. Dies ist zum Beispiel die Situation in der Theorie der Mannigfaltigkeiten.

  1. Etymologie nach Kluge Etymologisches Wörterbuch der deutschen Sprache, 24. Auflage, 2002.

Koordinatensystem

Dodaje.pl - Ogłoszenia lokalne