Die numerische lineare Algebra ist ein zentrales Teilgebiet der numerischen Mathematik. Sie beschäftigt sich mit der Entwicklung und der Analyse von Rechenverfahren (Algorithmen) für Problemstellungen der linearen Algebra, insbesondere der Lösung von linearen Gleichungssystemen und Eigenwertproblemen. Solche Probleme spielen in allen Natur- und Ingenieurwissenschaften, aber auch in der Ökonometrie und in der Statistik eine große Rolle.
Die Algorithmen der numerischen linearen Algebra lassen sich grob in zwei Gruppen einteilen: in die direkten Verfahren, die theoretisch nach endlich vielen Rechenschritten die exakte Lösung eines Problems liefern, und in die iterativen Verfahren, bei denen die exakte Lösung schrittweise immer genauer angenähert wird. Da aber auch die direkten Verfahren wegen der beim Rechnen mit endlicher Genauigkeit entstehenden Rundungsfehler nur Näherungen für die exakte Lösung liefern, ist diese Unterscheidung nur für die Entwicklung und Untersuchung der Verfahren selbst von Bedeutung; für den praktischen Einsatz spielt sie keine große Rolle. Historisch gehen die ersten systematischen Verfahren aus beiden Gruppen – das direkte gaußsche Eliminationsverfahren und das iterative Gauß-Seidel-Verfahren – auf Carl Friedrich Gauß zurück. Beispiele für bedeutende Verfahren des 20. Jahrhunderts, die zahlreiche Verbesserungen und Weiterentwicklungen zur Folge hatten, sind das Zerlegungsverfahren von André-Louis Cholesky, das QR-Verfahren für Eigenwertprobleme von John G. F. Francis und Wera Nikolajewna Kublanowskaja sowie das CG-Verfahren von Eduard Stiefel und Magnus Hestenes als erster Vertreter der wichtigen Krylow-Unterraum-Verfahren.