Der Begriff Quadratische Menge[1] beschreibt in der synthetischen Geometrie Mengen, die in der analytischen Geometrie als projektive Quadriken bezeichnet werden, koordinatenfrei, allein durch Inzidenz- und Reichhaltigkeitseigenschaften. Er verallgemeinert diesen Begriff dabei so, dass er auch für nichtdesarguesscheprojektive Ebenen und für nicht-pappusscheprojektive Geometrien angewandt werden kann.[2] Quadratische Mengen und ihre Tangentialräume sind selbst wieder Geometrien in einem allgemeineren Sinn, sogenannte Inzidenzstrukturen, in einigen Fällen sind sie sogar projektive Geometrien. Besonders nützlich ist der Begriff bei endlichen Geometrien.
↑Tatsächlich ist der Begriff „quadratische Menge“ in vielen Fällen echt umfassender als „projektive Quadrik“ und damit nicht gleichwertig zu diesem analytischen Begriff. Gleichwertig sind die Begriffe in endlichen, desarguesschenFano-Ebenen, beachte dazu die Beispiele im vorliegenden Artikel.