Der Satz von Silver, benannt nach Jack Silver, ist ein Satz aus der Mengenlehre, der sich mit möglichen Verallgemeinerungen der Kontinuumshypothese befasst. Die verallgemeinerte Kontinuumshypothese ist von den üblichen Axiomen der Mengenlehre, das heißt von ZFC, unabhängig, man kann sie also dort weder beweisen noch widerlegen. Der hier zu besprechende Satz liefert eine Einschränkung für die Ungültigkeit der verallgemeinerten Kontinuumshypothese; er besagt, dass die kleinste Kardinalzahl, für die die verallgemeinerte Kontinuumshypothese falsch ist, keine singuläre Kardinalzahl mit überabzählbarer Konfinalität sein kann. Dieses Resultat war überraschend, Silver selbst schreibt[1]:
Die Beweismethoden führen auch zu einem Satz über die singuläre-Kardinalzahlen-Hypothese, der ebenfalls als Satz von Silver bekannt ist.