Eine stereografische Projektion (auch konforme azimutale Projektion) ist eine Abbildung einer Kugelfläche in eine Ebene mit Hilfe einer Zentralprojektion, deren Projektionszentrum (PZ) auf der Kugel liegt. Die das Projektionszentrum und den Kugelmittelpunkt enthaltende Gerade ist orthogonal zur Bildebene, die traditionell die dem Projektionszentrum gegenüberliegende Tangentialebene ist.[1]
Die stereografische Projektion wurde zuerst bei der Abbildung der Himmelskugel auf dem Astrolabium angewendet. Entdeckt wurde sie bereits in der Antike, vermutlich von Hipparchos um 130 v. Chr. Ausführlich und mit geometrischem Beweis dafür, dass Kreise der Kugeloberfläche in Kreise der Bildebene übergehen (Kreistreue), ist sie in der kleinen Abhandlung Planisphaerium des Ptolemäos (ca. 85–160) dargelegt. Die Idee, die Kreis- und die Winkeltreue dieser Abbildung auch für kartografische Abbildungen der Erdoberfläche zu nutzen, hatte erstmals der Nürnberger Astronom und Mathematiker Johannes Werner (1468–1528).[1] Sie hat allerdings den Nachteil merklicher Flächenverzerrungen an den Kartenrändern.
In der Kristallografie findet die stereografische Projektion praktische Anwendung in der Darstellung der Gitterebenen eines Kristalls (üblicherweise winkeltreu mittels des sogenannten Wulff’schen Netzes)[2] und in der Strukturgeologie bei der Darstellung von Geländedaten wie des Streichens und Fallens von Schicht-, Schieferungs-, Verwerfungs- und Kluftflächen (üblicherweise flächentreu mittels des sogenannten Schmidt’schen Netzes).[3]
In der reinen Mathematik hat die stereografische Projektion eine erweiterte, abstraktere Bedeutung. Sie wird auch für höherdimensionale Räume, also nicht nur zur Abbildung aus dem dreidimensionalen in den zweidimensionalen Raum, benutzt.[4][5]