Stochastischer Prozess

Zwei Pfade eines Brownsche Brücke genannten speziellen stochastischen Prozesses

Ein stochastischer Prozess (auch Zufallsprozess) ist ein mathematisches Objekt zur Modellierung von zufälligen, oft zeitlich geordneten, Vorgängen. Die Theorie der stochastischen Prozesse stellt eine wesentliche Erweiterung der Wahrscheinlichkeitstheorie dar und bildet die Grundlage für die stochastische Analysis. Obwohl einfache stochastische Prozesse schon vor langer Zeit studiert wurden, wurde die heute gültige formale Theorie erst Anfang des 20. Jahrhunderts entwickelt, vor allem von Paul Lévy und Andrei Kolmogorow.

Im einfachsten Fall ist ein stochastischer Prozess das Modell einer zufälligen Funktion, deren Realisierungen gewöhnliche Funktionen, die so genannten Pfade, sind. Formal erfolgt die Festlegung eines stochastischen Prozesses durch einen Vektor, eine Folge oder allgemeiner eine Familie von Zufallsvariablen, die gemeinsam eine mehrdimensionale oder unendlich-dimensionale Wahrscheinlichkeitsverteilung besitzen.

Ursprünglich wurde der Begriff des stochastischen Prozesses für Fälle verwendet, bei denen das zeitliche Fortschreiten eines zufallsbestimmten Vorgangs modelliert wurde.[1] Inzwischen hat sich die Bedeutung des Begriffs verallgemeinert und als stochastische Prozesse werden auch unendliche Familien von Zufallsvariablen bezeichnet, deren Realisierungen Funktionen sind, ohne dass ein zeitlicher Bezug vorliegt. Solche allgemeineren stochastischen Prozesse werden z. B. in der Theorie empirischer Prozesse untersucht.[2][3]

  1. Joseph L. Doob: Stochastic Processes. Wiley, New York 1953, ISBN 978-0-471-52369-7, S. 46.: „From the non-mathematical point of view a stochastic process is any probability process, that is, any process running along in time and controlled by probabilistic laws. Numerical observations made as the process continues indicate its evolution. With this background to guide us we define as stochastic process as any family of random variables . Here is in practice the observation at time , and is the time range involved.“
  2. Galen R. Shorack, Jon A. Wellner: Empirical Processes with Applications in Statistics. Wiley, New York 1986 (Unveränderter Nachdruck: SIAM, Philadelphia 2009, ISBN 978-0-89871-684-9).
  3. Aad W. van der Vaart, Jon A. Wellner: Weak Convergence and Empirical Processes – With Applications to Statistics (= Springer Series in Statistics). 2. Auflage. Springer, Cham 2023, ISBN 978-3-03129038-1, doi:10.1007/978-3-031-29040-4.

Stochastischer Prozess

Dodaje.pl - Ogłoszenia lokalne