Names | |
---|---|
Preferred IUPAC name
(5S,6E,8Z,11Z,14Z)-5-Hydroxyicosa-6,8,11,14-tetraenoic acid | |
Other names
5-HETE, 5(S)-HETE
| |
Identifiers | |
3D model (JSmol)
|
|
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.161.309 |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C20H32O3 | |
Molar mass | 320.473 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
5-Hydroxyeicosatetraenoic acid (5-HETE, 5(S)-HETE, or 5S-HETE) is an eicosanoid, i.e. a metabolite of arachidonic acid. It is produced by diverse cell types in humans and other animal species. These cells may then metabolize the formed 5(S)-HETE to 5-oxo-eicosatetraenoic acid (5-oxo-ETE), 5(S),15(S)-dihydroxyeicosatetraenoic acid (5(S),15(S)-diHETE), or 5-oxo-15-hydroxyeicosatetraenoic acid (5-oxo-15(S)-HETE).
5(S)-HETE, 5-oxo-ETE, 5(S),15(S)-diHETE, and 5-oxo-15(S)-HETE, while differing in potencies, share a common mechanism for activating cells and a common set of activities. They are therefore a family of structurally related metabolites. Animal studies and a limited set of human studies suggest that this family of metabolites serve as hormone-like autocrine and paracrine signalling agents that contribute to the up-regulation of acute inflammatory and allergic responses. In this capacity, these metabolites may be members of the innate immune system.
In vitro studies suggest that 5(S)-HETE and/or other of its family members may also be active in promoting the growth of certain types of cancers, in simulating bone reabsorption, in signaling for the secretion of aldosterone and progesterone, in triggering parturition, and in contributing to other responses in animals and humans. However, the roles of 5(S)-HETE family members in these responses as well as in inflammation and allergy are unproven and will require much further study.
Among the 5(S)-HETE family members, 5(S)-HETE takes precedence over the other members of this family because it was the first to be discovered and has been studied far more thoroughly. However, 5-oxo-ETE is the most potent member of this family and therefore may be its critical member with respect to physiology and pathology. 5-OxoETE has gained attention in recent studies.