Adele ring

In mathematics, the adele ring of a global field (also adelic ring, ring of adeles or ring of adèles[1]) is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.

An adele derives from a particular kind of idele. "Idele" derives from the French "idèle" and was coined by the French mathematician Claude Chevalley. The word stands for 'ideal element' (abbreviated: id.el.). Adele (French: "adèle") stands for 'additive idele' (that is, additive ideal element).

The ring of adeles allows one to describe the Artin reciprocity law, which is a generalisation of quadratic reciprocity, and other reciprocity laws over finite fields. In addition, it is a classical theorem from Weil that -bundles on an algebraic curve over a finite field can be described in terms of adeles for a reductive group . Adeles are also connected with the adelic algebraic groups and adelic curves.

The study of geometry of numbers over the ring of adeles of a number field is called adelic geometry.

  1. ^ Groechenig, Michael (August 2017). "Adelic Descent Theory". Compositio Mathematica. 153 (8): 1706–1746. arXiv:1511.06271. doi:10.1112/S0010437X17007217. ISSN 0010-437X. S2CID 54016389.

Adele ring

Dodaje.pl - Ogłoszenia lokalne