Alternating knot

One of three non-alternating knots with crossing number 8

In knot theory, a knot or link diagram is alternating if the crossings alternate under, over, under, over, as one travels along each component of the link. A link is alternating if it has an alternating diagram.

Many of the knots with crossing number less than 10 are alternating. This fact and useful properties of alternating knots, such as the Tait conjectures, was what enabled early knot tabulators, such as Tait, to construct tables with relatively few mistakes or omissions. The simplest non-alternating prime knots have 8 crossings (and there are three such: 819, 820, 821).

It is conjectured that as the crossing number increases, the percentage of knots that are alternating goes to 0 exponentially quickly.

Alternating links end up having an important role in knot theory and 3-manifold theory, due to their complements having useful and interesting geometric and topological properties. This led Ralph Fox to ask, "What is an alternating knot?" By this he was asking what non-diagrammatic properties of the knot complement would characterize alternating knots.[1]

In November 2015, Joshua Evan Greene published a preprint that established a characterization of alternating links in terms of definite spanning surfaces, i.e. a definition of alternating links (of which alternating knots are a special case) without using the concept of a link diagram.[2]

Various geometric and topological information is revealed in an alternating diagram. Primeness and splittability of a link is easily seen from the diagram. The crossing number of a reduced, alternating diagram is the crossing number of the knot. This last is one of the celebrated Tait conjectures.

An alternating knot diagram is in one-to-one correspondence with a planar graph. Each crossing is associated with an edge and half of the connected components of the complement of the diagram are associated with vertices in a checker board manner.

  1. ^ Lickorish, W. B. Raymond (1997), "Geometry of Alternating Links", An Introduction to Knot Theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, pp. 32–40, doi:10.1007/978-1-4612-0691-0_4, ISBN 0-387-98254-X, MR 1472978; see in particular p. 32
  2. ^ Greene, Joshua (2017). "Alternating links and definite surfaces". Duke Mathematical Journal. 166 (11). arXiv:1511.06329. doi:10.1215/00127094-2017-0004. S2CID 59023367.

Alternating knot

Dodaje.pl - Ogłoszenia lokalne