Boundary value problem

Shows a region where a differential equation is valid and the associated boundary values

In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions.[1] A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions.

Boundary value problems arise in several branches of physics as any physical differential equation will have them. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. A large class of important boundary value problems are the Sturm–Liouville problems. The analysis of these problems, in the linear case, involves the eigenfunctions of a differential operator.

To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed.

Among the earliest boundary value problems to be studied is the Dirichlet problem, of finding the harmonic functions (solutions to Laplace's equation); the solution was given by the Dirichlet's principle.

  1. ^ Daniel Zwillinger (12 May 2014). Handbook of Differential Equations. Elsevier Science. pp. 536–. ISBN 978-1-4832-2096-3.

Boundary value problem

Dodaje.pl - Ogłoszenia lokalne