Through consideration of this set, Cantor and others helped lay the foundations of modern point-set topology. The most common construction is the Cantor ternary set, built by removing the middle third of a line segment and then repeating the process with the remaining shorter segments. Cantor mentioned this ternary construction only in passing, as an example of a perfect set that is nowhere dense (,[5] Anmerkungen zu §10, /p. 590).
More generally, in topology, aCantor space is a topological space homeomorphic to the Cantor ternary set (equipped with its subspace topology). The Cantor set is naturally homeomorphic to the countable product of the discrete two point space . By a theorem of L. E. J. Brouwer, this is equivalent to being perfect, nonempty, compact, metrizable and zero dimensional.[7]
^The "Cantor set" was also discovered by Paul du Bois-Reymond (1831–1889). See du Bois-Reymond, Paul (1880), "Der Beweis des Fundamentalsatzes der Integralrechnung", Mathematische Annalen (in German), 16, footnote on p. 128. The "Cantor set" was also discovered in 1881 by Vito Volterra (1860–1940). See: Volterra, Vito (1881), "Alcune osservazioni sulle funzioni punteggiate discontinue" [Some observations on point-wise discontinuous function], Giornale di Matematiche (in Italian), 19: 76–86.