Climate change and infectious diseases

Climate change is altering the geographic range and seasonality of some insects that can carry diseases, for example Aedes aegypti, the mosquito that is the vector for dengue transmission.

Global climate change has increased the occurrence of some infectious diseases.[1] Infectious diseases whose transmission is impacted by climate change include, for example, vector-borne diseases like dengue fever, malaria, tick-borne diseases, leishmaniasis, zika fever, chikungunya and Ebola. One mechanism contributing to increased disease transmission is that climate change is altering the geographic range and seasonality of the insects (or disease vectors) that can carry the diseases.[2] Scientists stated a clear observation in 2022: "The occurrence of climate-related food-borne and waterborne diseases has increased (very high confidence)."[3]: 11 

Infectious diseases that are sensitive to climate can be grouped into: vector-borne diseases (transmitted via mosquitos, ticks etc.), waterborne diseases (transmitted via viruses or bacteria through water), and food-borne diseases.(spread through pathogens via food)[4]: 1107  Climate change affects the distribution of these diseases due to the expanding geographic range and seasonality of these diseases and their vectors.[5]: 9  Like other ways climate change affects human health, climate change exacerbates existing inequalities and challenges in managing infectious disease.

Mosquito-borne diseases that are sensitive to climate include malaria, lymphatic filariasis, Rift Valley fever, yellow fever, dengue fever, Zika virus, and chikungunya.[6][7][8] Scientists found in 2022 that rising temperatures are increasing the areas where dengue fever, malaria and other mosquito-carried diseases are able to spread.[4]: 1062 [9] Warmer temperatures are also advancing to higher elevations, allowing mosquitoes to survive in places that were previously in hospitable to them.[4]: 1045  This risks malaria returning to areas where it was previously eradicated.[10]

Ticks are changing their geographic range because of rising temperatures, and this puts new populations at risk. Ticks can spread lyme disease and tick-borne encephalitis. It is expected that climate change will increase the incidence of these diseases in the Northern Hemisphere.[4]: 1094  For example, a review of the literature found that "In the USA, a 2°C warming could increase the number of lyme disease cases by over 20% over the coming decades and lead to an earlier onset and longer length of the annual Lyme disease season".[4]: 1094 

Waterborne diseases are transmitted through water. The symptoms of waterborne diseases typically include diarrhea, fever and other flu-like symptoms, neurological disorders, and liver damage.[11] Climate changes have a large effect on the distribution of microbial species. These communities are very complex and can be extremely sensitive to external climate stimuli.[12] There is a range of waterborne diseases and parasites that will pose greater health risks in the future. This will vary by region. For example, in Africa, Cryptosporidium spp. and Giardia duodenalis (protozoan parasites) will increase. This is due to increasing temperatures and drought.[4]: 1095 

Scientist also expect that disease outbreaks caused by vibrio (in particular the bacterium that causes cholera, called vibrio cholerae) are increasing in occurrence and intensity.[4]: 1107  One reason is that the area of coastline with suitable conditions for vibrio bacteria has increased due to changes in sea surface temperature and sea surface salinity caused by climate change.[5]: 12  These pathogens can cause gastroenteritis, cholera, wound infections, and sepsis. The increasing occurrence of higher temperature days, heavy rainfall events and flooding due to climate change could lead to an increase in cholera risks.[4]: 1045 

  1. ^ Van de Vuurst P, Escobar LE (2023). "Climate change and infectious disease: a review of evidence and research trends". Infectious Diseases of Poverty. 12 (1): 51. doi:10.1186/s40249-023-01102-2. hdl:10919/115131. PMC 10186327. PMID 37194092.
  2. ^ Silburn A, Arndell J (1 December 2024). "The impact of dengue viruses: Surveillance, response, and public health implications in Queensland, Australia". Public Health in Practice. 8: 100529. doi:10.1016/j.puhip.2024.100529. ISSN 2666-5352. PMC 11282963. PMID 39071864.
  3. ^ IPCC, 2022: Summary for Policymakers [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (eds.)]. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3–33, doi:10.1017/9781009325844.001.
  4. ^ a b c d e f g h Cissé, G., R. McLeman, H. Adams, P. Aldunce, K. Bowen, D. Campbell-Lendrum, S. Clayton, K.L. Ebi, J. Hess, C. Huang, Q. Liu, G. McGregor, J. Semenza, and M.C. Tirado, 2022: Chapter 7: Health, Wellbeing, and the Changing Structure of Communities. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 1041–1170, doi:10.1017/9781009325844.009.
  5. ^ a b Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, Kennard H, Lampard P, Solano Rodriguez B, Arnell N, Ayeb-Karlsson S, Belesova K, Cai W, Campbell-Lendrum D, Capstick S, Chambers J, Chu L, Ciampi L, Dalin C, Dasandi N, Dasgupta S, Davies M, Dominguez-Salas P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Escobar LE, Georgeson L, Grace D, Graham H, Gunther SH, Hartinger S, He K, Heaviside C, Hess J, Hsu SC, Jankin S, Jimenez MP, Kelman I, et al. (October 2021). "The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future" (PDF). The Lancet. 398 (10311): 1619–1662. doi:10.1016/S0140-6736(21)01787-6. hdl:10278/3746207. PMC 7616807. PMID 34687662. S2CID 239046862.
  6. ^ Reiter P (2001). "Climate Change and Mosquito-Borne Disease". Environmental Health Perspectives. 109 (1): 141–161. Bibcode:2001EnvHP.109S.141R. doi:10.1289/ehp.01109s1141. PMC 1240549. PMID 11250812. Archived from the original on 24 Aug 2011.
  7. ^ Hunter P (2003). "Climate change and waterborne and vector-borne disease". Journal of Applied Microbiology. 94: 37S – 46S. doi:10.1046/j.1365-2672.94.s1.5.x. PMID 12675935. S2CID 9338260.
  8. ^ McMichael A, Woodruff R, Hales S (11 March 2006). "Climate change and human health: present and future risks". The Lancet. 367 (9513): 859–869. doi:10.1016/s0140-6736(06)68079-3. PMID 16530580. S2CID 11220212.
  9. ^ Silburn A, Arndell J (1 December 2024). "The impact of dengue viruses: Surveillance, response, and public health implications in Queensland, Australia". Public Health in Practice. 8: 100529. doi:10.1016/j.puhip.2024.100529. ISSN 2666-5352. PMC 11282963. PMID 39071864.
  10. ^ Epstein PR, Ferber D (2011). "The Mosquito's Bite". Changing Planet, Changing Health: How the Climate Crisis Threatens Our Health and what We Can Do about it. University of California Press. pp. 29–61. ISBN 978-0-520-26909-5.
  11. ^ Levy K, Smith SM, Carlton EJ (June 2018). "Climate Change Impacts on Waterborne Diseases: Moving Toward Designing Interventions". Current Environmental Health Reports. 5 (2): 272–282. Bibcode:2018CEHR....5..272L. doi:10.1007/s40572-018-0199-7. PMC 6119235. PMID 29721700.
  12. ^ Walker JT (September 2018). "The influence of climate change on waterborne disease and Legionella: a review". Perspectives in Public Health. 138 (5): 282–286. doi:10.1177/1757913918791198. PMID 30156484. S2CID 52115812.

Climate change and infectious diseases

Dodaje.pl - Ogłoszenia lokalne