Climate change mitigation

Aerial view of a solar farm with part of a wind farm in the background
public transport
reforestation
Plant-based dishes
Various aspects of climate change mitigation: Renewable energy (solar and wind power) in England, electrified public transport in France, a reforestation project in Haiti to remove carbon dioxide from the atmosphere, and an example of a plant-based meal

Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere.[1][2] Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100,[3] significantly above the 2015 Paris Agreement's[4] goal of limiting global warming to below 2 °C.[5][6]

Solar energy and wind power can replace fossil fuels at the lowest cost compared to other renewable energy options.[7] The availability of sunshine and wind is variable and can require electrical grid upgrades, such as using long-distance electricity transmission to group a range of power sources.[8] Energy storage can also be used to even out power output, and demand management can limit power use when power generation is low. Cleanly generated electricity can usually replace fossil fuels for powering transportation, heating buildings, and running industrial processes.[citation needed] Certain processes are more difficult to decarbonise, such as air travel and cement production. Carbon capture and storage (CCS) can be an option to reduce net emissions in these circumstances, although fossil fuel power plants with CCS technology is currently a high cost climate change mitigation strategy.[9]

Human land use changes such as agriculture and deforestation cause about 1/4th of climate change. These changes impact how much CO2 is absorbed by plant matter and how much organic matter decays or burns to release CO2. These changes are part of the fast carbon cycle, whereas fossil fuels release CO2 that was buried underground as part of the slow carbon cycle. Methane is a short lived greenhouse gas that is produced by decaying organic matter and livestock, as well as fossil fuel extraction. Land use changes can also impact precipitation patterns and the reflectivity of the surface of the Earth. It is possible to cut emissions from agriculture by reducing food waste, switching to a more plant-based diet (also referred to as low-carbon diet), and by improving farming processes.[10]

Various policies can encourage climate change mitigation. Carbon pricing systems have been set up that either tax CO2 emissions or cap total emissions and trade emission credits. Fossil fuel subsidies can be eliminated in favor of clean energy subsidies, and incentives offered for installing energy efficiency measures or switching to electric power sources.[11] Another issue is overcoming environmental objections when constructing new clean energy sources and making grid modifications.

  1. ^ Fawzy, Samer; Osman, Ahmed I.; Doran, John; Rooney, David W. (2020). "Strategies for mitigation of climate change: a review". Environmental Chemistry Letters. 18 (6): 2069–2094. Bibcode:2020EnvCL..18.2069F. doi:10.1007/s10311-020-01059-w.
  2. ^ Abbass, Kashif; Qasim, Muhammad Zeeshan; Song, Huaming; Murshed, Muntasir; Mahmood, Haider; Younis, Ijaz (2022). "A review of the global climate change impacts, adaptation, and sustainable mitigation measures". Environmental Science and Pollution Research. 29: 42539–42559. doi:10.1007/s11356-022-19718-6. PMC 8978769.
  3. ^ Ritchie, Hannah; Roser, Max; Rosado, Pablo (11 May 2020). "CO2 and Greenhouse Gas Emissions". Our World in Data. Retrieved 27 August 2022.
  4. ^ Rogelj, J.; Shindell, D.; Jiang, K.; Fifta, S.; et al. (2018). "Chapter 2: Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development" (PDF). Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (PDF).
  5. ^ Harvey, Fiona (26 November 2019). "UN calls for push to cut greenhouse gas levels to avoid climate chaos". The Guardian. Retrieved 27 November 2019.
  6. ^ "Cut Global Emissions by 7.6 Percent Every Year for Next Decade to Meet 1.5°C Paris Target – UN Report". United Nations Framework Convention on Climate Change. United Nations. Retrieved 27 November 2019.
  7. ^ IPCC (2022) Summary for policy makers in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  8. ^ Ram M., Bogdanov D., Aghahosseini A., Gulagi A., Oyewo A.S., Child M., Caldera U., Sadovskaia K., Farfan J., Barbosa LSNS., Fasihi M., Khalili S., Dalheimer B., Gruber G., Traber T., De Caluwe F., Fell H.-J., Breyer C. Global Energy System based on 100% Renewable Energy – Power, Heat, Transport and Desalination Sectors Archived 2021-04-01 at the Wayback Machine. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta, Berlin, March 2019.
  9. ^ "Cement – Analysis". IEA. Retrieved 24 November 2022.
  10. ^ Cite error: The named reference UNEP-2022 was invoked but never defined (see the help page).
  11. ^ "Climate Change Performance Index" (PDF). November 2022. Retrieved 16 November 2022.

Climate change mitigation

Dodaje.pl - Ogłoszenia lokalne