Conformal group

In mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space.

Several specific conformal groups are particularly important:

  • The conformal orthogonal group. If V is a vector space with a quadratic form Q, then the conformal orthogonal group CO(V, Q) is the group of linear transformations T of V for which there exists a scalar λ such that for all x in V
For a definite quadratic form, the conformal orthogonal group is equal to the orthogonal group times the group of dilations.

All conformal groups are Lie groups.

  1. ^ Jayme Vaz, Jr.; Roldão da Rocha, Jr. (2016). An Introduction to Clifford Algebras and Spinors. Oxford University Press. p. 140. ISBN 9780191085789.

Conformal group

Dodaje.pl - Ogłoszenia lokalne