Copernicium

Copernicium, 112Cn
Copernicium
Pronunciation/ˌkpərˈnɪsiəm/ (KOH-pər-NISS-ee-əm)
Mass number[285]
Copernicium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Hg

Cn

roentgeniumcoperniciumnihonium
Atomic number (Z)112
Groupgroup 12
Periodperiod 7
Block  d-block
Electron configuration[Rn] 5f14 6d10 7s2 (predicted)[1]
Electrons per shell2, 8, 18, 32, 32, 18, 2 (predicted)
Physical properties
Phase at STPliquid (predicted)[2][3]
Melting point283 ± 11 K ​(10 ± 11 °C, ​50 ± 20 °F) (predicted)[3]
Boiling point340 ± 10 K ​(67 ± 10 °C, ​153 ± 18 °F)[3] (predicted)
Density (near r.t.)14.0 g/cm3 (predicted)[3]
Triple point283 K, ​25 kPa (predicted)[3]
Atomic properties
Oxidation statescommon: (none)
(+2), (+4)[1]
Ionization energies
  • 1st: 1155 kJ/mol
  • 2nd: 2170 kJ/mol
  • 3rd: 3160 kJ/mol
  • (more) (all estimated)[1]
Atomic radiuscalculated: 147 pm[1][4] (predicted)
Covalent radius122 pm (predicted)[5]
Other properties
Natural occurrencesynthetic
Crystal structurehexagonal close-packed (hcp)
Hexagonal close-packed crystal structure for copernicium

(predicted)[3]
CAS Number54084-26-3
History
Namingafter Nicolaus Copernicus
DiscoveryGesellschaft für Schwerionenforschung (1996)
Isotopes of copernicium
Main isotopes[6] Decay
abun­dance half-life (t1/2) mode pro­duct
283Cn synth 3.81 s[7] α96% 279Ds
SF4%
ε? 283Rg
Preview warning: Infobox Cn isotopes: Decay mode not recognised, input shown unedited "dm3=ε?" cat#D
285Cn synth 30 s α 281Ds
286Cn synth 8.4 s? SF
 Category: Copernicium
| references

Copernicium is a synthetic chemical element; it has symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of approximately 30 seconds. Copernicium was first created in February 1996 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany. It was named after the astronomer Nicolaus Copernicus on his 537th anniversary.

In the periodic table of the elements, copernicium is a d-block transactinide element and a group 12 element. During reactions with gold, it has been shown[8] to be an extremely volatile element, so much so that it is possibly a gas or a volatile liquid at standard temperature and pressure.

Copernicium is calculated to have several properties that differ from its lighter homologues in group 12, zinc, cadmium and mercury; due to relativistic effects, it may give up its 6d electrons instead of its 7s ones, and it may have more similarities to the noble gases such as radon rather than its group 12 homologues. Calculations indicate that copernicium may show the oxidation state +4, while mercury shows it in only one compound of disputed existence and zinc and cadmium do not show it at all. It has also been predicted to be more difficult to oxidize copernicium from its neutral state than the other group 12 elements. Predictions vary on whether solid copernicium would be a metal, semiconductor, or insulator. Copernicium is one of the heaviest elements whose chemical properties have been experimentally investigated.

  1. ^ a b c d Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  2. ^ Soverna S 2004, 'Indication for a gaseous element 112,' in U Grundinger (ed.), GSI Scientific Report 2003, GSI Report 2004-1, p. 187, ISSN 0174-0814
  3. ^ a b c d e f Mewes, J.-M.; Smits, O. R.; Kresse, G.; Schwerdtfeger, P. (2019). "Copernicium is a Relativistic Noble Liquid". Angewandte Chemie International Edition. doi:10.1002/anie.201906966.
  4. ^ Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  5. ^ Chemical Data. Copernicium - Cn, Royal Chemical Society
  6. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  7. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. (2022). "Investigation of 48Ca-induced reactions with 242Pu and 238U targets at the JINR Superheavy Element Factory". Physical Review C. 106 (24612). Bibcode:2022PhRvC.106b4612O. doi:10.1103/PhysRevC.106.024612. S2CID 251759318.
  8. ^ Eichler, R.; et al. (2007). "Chemical Characterization of Element 112". Nature. 447 (7140): 72–75. Bibcode:2007Natur.447...72E. doi:10.1038/nature05761. PMID 17476264. S2CID 4347419.

Copernicium

Dodaje.pl - Ogłoszenia lokalne