Draft:Contact-electro-catalysis

  • Comment: I suspect Conflict of interest in this article regarding the previously very biased history of this article, and the fact that this article's editor's username seems to overlap with a professor associated with this field. You may repeal this if you believe it's a mistake. Pygos (talk) 02:17, 23 August 2024 (UTC)
  • Comment: Prior to attempting a future submission prior work and established pages must be represented, and only relevance advances on the included. Ldm1954 (talk) 23:43, 21 June 2024 (UTC)
  • Comment: Despite the name-dropping of other researchers (name-dropping itself is a poor writing style for Wikipedia), most of the underlying refs still have one or more members of the same primary research group as co-authors (often the original PI themself). DMacks (talk) 04:09, 17 June 2024 (UTC)
  • Comment: This aricle's content and referencing are nearly all to the researchers who originally proposed this topic (and underlying ideas they might reasonably cite in its development). Need several WP:SECONDARY (independent review) refs to demonstrate notability of this topic at all. Many of the passages here are lifted from or close paraphrases of the cited refs and others from the same researchers. And there is almost surely COI. DMacks (talk) 20:52, 7 June 2024 (UTC)
  • Comment: Not much major changes from this article and editor did not follow the manual of style for qualifying a Wikipedia article, or rather I see this as a book chapter or something. And books are primary sources, you need to go through sources for better idea. ☮️Counter-Strike:Mention 269🕉️(🗨️✉️📔) 07:16, 15 May 2024 (UTC)
  • Comment: On Wikipedia, all stated facts should be supported by a citation to a reliable source. Currently, large portions of this draft are unsourced - please add necessary citations before resubmitting. Thank you. ~Liancetalk 00:35, 12 May 2024 (UTC)

Contact-electro-catalysis (CEC), is a bridging concept between contact-electrification effect (also know as triboelectricity) and mechanochemistry. It was first proposed in 2022 by using chemically inert triboelectric materials (FEP) to catalyze the degradation of methyl orange (MO) aqueous solution.[1] , The definition of CEC refers to a process that exploits the electron transfer during contact-electrification (CE) to promote chemical reactions.[1] The solid to be used in CEC involves pristine polymers (FEP, PTFE),[2][3][4] inorganics (SiO2),[5][6] and matrix composites.[7][8][9] The energy source of CEC is mechanical stimuli such as ultrasonication and ball milling.[1][2][10] CEC has appeared as a significant branch of mechanochemistry due to its broad materials selection range and application fields. [11][12][13]

  1. ^ a b c Wang, Ziming; Berbille, Andy; Feng, Yawei; Li, Site; Zhu, Laipan; Tang, Wei; Wang, Zhong Lin (2022-01-10). "Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders". Nature Communications. 13 (1): 130. Bibcode:2022NatCo..13..130W. doi:10.1038/s41467-021-27789-1. ISSN 2041-1723. PMC 8748705. PMID 35013271.
  2. ^ a b Wang, Ziming; Dong, Xuanli; Li, Xiao-Fen; Feng, Yawei; Li, Shunning; Tang, Wei; Wang, Zhong Lin (2024-01-26). "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials". Nature Communications. 15 (1): 757. Bibcode:2024NatCo..15..757W. doi:10.1038/s41467-024-45041-4. ISSN 2041-1723. PMC 10810876. PMID 38272926.
  3. ^ Zhao, Jiawei; Zhang, Xiaotong; Xu, Jiajia; Tang, Wei; Lin Wang, Zhong; Ru Fan, Feng (2023-05-15). "Contact-electro-catalysis for Direct Synthesis of H 2 O 2 under Ambient Conditions". Angewandte Chemie. 135 (21). Bibcode:2023AngCh.135E0604Z. doi:10.1002/ange.202300604. ISSN 0044-8249.
  4. ^ Zhao, Xin; Su, Yusen; Berbille, Andy; Wang, Zhong Lin; Tang, Wei (2023-03-30). "Degradation of methyl orange by dielectric films based on contact-electro-catalysis". Nanoscale. 15 (13): 6243–6251. doi:10.1039/D2NR06783H. ISSN 2040-3372. PMID 36896686.
  5. ^ Li, Huifan; Berbille, Andy; Zhao, Xin; Wang, Ziming; Tang, Wei; Wang, Zhong Lin (October 2023). "A contact-electro-catalytic cathode recycling method for spent lithium-ion batteries". Nature Energy. 8 (10): 1137–1144. Bibcode:2023NatEn...8.1137L. doi:10.1038/s41560-023-01348-y. ISSN 2058-7546.
  6. ^ Chen, Zhixiang; Lu, Yi; Liu, Xuyang; Li, Jingqiao; Liu, Qingxia (2023-04-01). "Novel magnetic catalysts for organic pollutant degradation via contact electro-catalysis". Nano Energy. 108: 108198. Bibcode:2023NEne..10808198C. doi:10.1016/j.nanoen.2023.108198. ISSN 2211-2855.
  7. ^ Zhang, Yihe; Kang, Tian; Han, Xin; Yang, Weifeng; Gong, Wei; Li, Kerui; Guo, Yinben (2023-06-15). "Molecular-functionalized metal-organic frameworks enabling contact-electro-catalytic organic decomposition". Nano Energy. 111: 108433. Bibcode:2023NEne..11108433Z. doi:10.1016/j.nanoen.2023.108433. ISSN 2211-2855.
  8. ^ Jiang, Buwen; Xue, Xiaoxuan; Mu, Zuxiang; Zhang, Haoyuan; Li, Feng; Liu, Kai; Wang, Wenqian; Zhang, Yongfei; Li, Wenhui; Yang, Chao; Zhang, Kewei (January 2022). "Contact-Piezoelectric Bi-Catalysis of an Electrospun ZnO@PVDF Composite Membrane for Dye Decomposition". Molecules. 27 (23): 8579. doi:10.3390/molecules27238579. ISSN 1420-3049. PMC 9735836. PMID 36500670.
  9. ^ F. Yin, J.-H. Liu, Y. Zhang, M.-N. Liu, L.-Y. Wang, Z.-C. Yu, W.-H. Yang, J. Zhang and Y.-Z. Long, Advanced Functional Materials, n/a, 2406417 (2024). "Contact-Electro-Catalysis for Organic Pollutants Degradation Based on 2D Fluorinated Graphite". Advanced Functional Materials. 34 (41). doi:10.1002/adfm.202406417.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  10. ^ Zhao, Yi; Liu, Yang; Wang, Yuying; Li, Shulan; Liu, Yi; Wang, Zhong Lin; Jiang, Peng (2023-07-01). "The process of free radical generation in contact electrification at solid-liquid interface". Nano Energy. 112: 108464. Bibcode:2023NEne..11208464Z. doi:10.1016/j.nanoen.2023.108464. ISSN 2211-2855.
  11. ^ Cite error: The named reference :3 was invoked but never defined (see the help page).
  12. ^ Li, Juan; Xia, Yu; Song, Xiaowei; Chen, Bolei; Zare, Richard N. (2024-01-23). "Continuous ammonia synthesis from water and nitrogen via contact electrification". Proceedings of the National Academy of Sciences. 121 (4): e2318408121. Bibcode:2024PNAS..12118408L. doi:10.1073/pnas.2318408121. ISSN 0027-8424. PMC 10823170. PMID 38232282.
  13. ^ Li, Haimei; Wang, Zichen; Chu, Xu; Zhao, Yi; He, Guangqin; Hu, Yulin; Liu, Yi; Wang, Zhong Lin; Jiang, Peng (2024-05-01). "Free Radicals Generated in Perfluorocarbon–Water (Liquid–Liquid) Interfacial Contact Electrification and Their Application in Cancer Therapy". Journal of the American Chemical Society. 146 (17): 12087–12099. Bibcode:2024JAChS.14612087L. doi:10.1021/jacs.4c02149. ISSN 0002-7863. PMID 38647488.

Draft:Contact-electro-catalysis

Dodaje.pl - Ogłoszenia lokalne