Exterior algebra

Orientation defined by an ordered set of vectors.
Reversed orientation corresponds to negating the exterior product.
Geometric interpretation of grade n elements in a real exterior algebra for n = 0 (signed point), 1 (directed line segment, or vector), 2 (oriented plane element), 3 (oriented volume). The exterior product of n vectors can be visualized as any n-dimensional shape (e.g. n-parallelotope, n-ellipsoid); with magnitude (hypervolume), and orientation defined by that of its (n − 1)-dimensional boundary and on which side the interior is.[1][2]

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann,[3] and the names of the product come from the "wedge" symbol and the fact that the product of two elements of is "outside"

The wedge product of vectors is called a blade of degree or -blade. The wedge product was introduced originally as an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues: The magnitude of a 2-blade is the area of the parallelogram defined by and and, more generally, the magnitude of a -blade is the (hyper)volume of the parallelotope defined by the constituent vectors. The alternating property that implies a skew-symmetric property that and more generally any blade flips sign whenever two of its constituent vectors are exchanged, corresponding to a parallelotope of opposite orientation.

The full exterior algebra contains objects that are not themselves blades, but linear combinations of blades; a sum of blades of homogeneous degree is called a k-vector, while a more general sum of blades of arbitrary degree is called a multivector.[4] The linear span of the -blades is called the -th exterior power of The exterior algebra is the direct sum of the -th exterior powers of and this makes the exterior algebra a graded algebra.

The exterior algebra is universal in the sense that every equation that relates elements of in the exterior algebra is also valid in every associative algebra that contains and in which the square of every element of is zero.

The definition of the exterior algebra can be extended for spaces built from vector spaces, such as vector fields and functions whose domain is a vector space. Moreover, the field of scalars may be any field (however for fields of characteristic two, the above condition must be replaced with which is equivalent in other characteristics). More generally, the exterior algebra can be defined for modules over a commutative ring. In particular, the algebra of differential forms in variables is an exterior algebra over the ring of the smooth functions in variables.

  1. ^ Penrose, R. (2007). The Road to Reality. Vintage books. ISBN 978-0-679-77631-4.
  2. ^ Wheeler, Misner & Thorne 1973, p. 83
  3. ^ Grassmann (1844) introduced these as extended algebras (cf. Clifford 1878).
  4. ^ The term k-vector is not equivalent to and should not be confused with similar terms such as 4-vector, which in a different context could mean an element of a 4-dimensional vector space. A minority of authors use the term -multivector instead of -vector, which avoids this confusion.

Exterior algebra

Dodaje.pl - Ogłoszenia lokalne