Generalized least squares

In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model. It is used when there is a non-zero amount of correlation between the residuals in the regression model. GLS is employed to improve statistical efficiency and reduce the risk of drawing erroneous inferences, as compared to conventional least squares and weighted least squares methods. It was first described by Alexander Aitken in 1935.[1]

It requires knowledge of the covariance matrix for the residuals. If this is unknown, estimating the covariance matrix gives the method of feasible generalized least squares (FGLS). However, FGLS provides fewer guarantees of improvement.

  1. ^ Aitken, A. C. (1935). "On Least Squares and Linear Combinations of Observations". Proceedings of the Royal Society of Edinburgh. 55: 42–48. doi:10.1017/s0370164600014346.

Generalized least squares

Dodaje.pl - Ogłoszenia lokalne