Hanson Formation

Hanson Formation
Stratigraphic range: Middle Sinemurian-Early Pliensbachian
~[1]
The Hanson Formation is located in the Transantarctic Mountains
TypeGeological formation
Unit ofVictoria Group
Sub-unitsThree informal members
UnderliesPrebble Formation
OverliesFalla Formation
Thickness237.5 m (779 ft)
Lithology
PrimarySandstone, tuffite
OtherClimbing-ripple lamination, horizontal lamination, and accumulations of clay-gall rip-up clasts
Location
Coordinates84°18′S 166°30′E / 84.3°S 166.5°E / -84.3; 166.5
Approximate paleocoordinates57°30′S 35°30′E / 57.5°S 35.5°E / -57.5; 35.5
RegionMount Kirkpatrick, Beardmore Glacier
Country Ross Dependency
Type section
Named forThe Hanson Spur
Named byDavid Elliot
Hanson Formation is located in Antarctica
Hanson Formation
Hanson Formation (Antarctica)

The Hanson Formation (also known as the Shafer Peak Formation) is a geologic formation on Mount Kirkpatrick and north Victoria Land, Ross Dependency, Antarctica. It is one of the two major dinosaur-bearing rock groups found on Antarctica to date; the other is the Snow Hill Island Formation and related formations from the Late Cretaceous of the Antarctic Peninsula. The formation has yielded some Mesozoic specimens, but most of it is as yet unexcavated. Part of the Victoria Group of the Transantarctic Mountains, it lies below the Prebble Formation and above the Falla Formation.[2] The formation includes material from volcanic activity linked to the Karoo-Ferar eruptions of the Lower Jurassic.[3][4] The climate of the zone was similar to that of modern southern Chile, humid, with a temperature interval of 17–18 degrees.[5] The Hanson Formation is correlated with the Section Peak Formation of the Eisenhower Range and Deep Freeze Range, as well as volcanic deposits on the Convoy Range and Ricker Hills of southern Victoria Land.[2] Recent work has successfully correlated the Upper Section Peak Formation, as well unnamed deposits in Convoy Range and Ricker Hills with the Lower Hanson, all likely of Sinemurian age and connected by layers of silicic ash, while the upper section has been found to be Pliensbachian, and correlated with a greater volcanic pulse, marked by massive ash inputs.[6][7]

  1. ^ Bomfleur, B.; Blomenkemper, P.; Kerp, H.; McLoughlin, S. (2018). "Polar regions of the Mesozoic–Paleogene greenhouse world as refugia for relict plant groups" (PDF). Transformative Paleobotany. 15 (1): 593–611. doi:10.1016/B978-0-12-813012-4.00024-3. Retrieved 13 February 2022.
  2. ^ a b Elliot, D.H. (1996). "The Hanson Formation: a new stratigraphical unit in the Transantarctic Mountains, Antarctica". Antarctic Science. 8 (4): 389–394. Bibcode:1996AntSc...8..389E. doi:10.1017/S0954102096000569. S2CID 129124111. Retrieved 15 November 2021.
  3. ^ Ross, P.S.; White, J.D.L. (2006). "Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica". Journal of Volcanology and Geothermal Research. 149 (1): 62–84. Bibcode:2006JVGR..149...62R. doi:10.1016/j.jvolgeores.2005.06.007.
  4. ^ Elliot, D. H.; Larsen, D. (1993). "Mesozoic volcanism in the Transantarctic Mountains: depositional environment and tectonic setting". Gondwana 8—Assembly, Evolution, and Dispersal. 1 (1): 379–410.
  5. ^ Chandler, M. A.; Rind, D.; Ruedy, R. (1992). "Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate". Geological Society of America Bulletin. 104 (1): 543–559. Bibcode:1992GSAB..104..543C. doi:10.1130/0016-7606(1992)104<0543:PCDTEJ>2.3.CO;2.
  6. ^ Cite error: The named reference :1 was invoked but never defined (see the help page).
  7. ^ Cite error: The named reference Paly was invoked but never defined (see the help page).

Hanson Formation

Dodaje.pl - Ogłoszenia lokalne