Hyperrectangle Orthotope | |
---|---|
Type | Prism |
Faces | 2n |
Edges | n × 2n−1 |
Vertices | 2n |
Schläfli symbol | {}×{}×···×{} = {}n[1] |
Coxeter diagram | ··· |
Symmetry group | [2n−1], order 2n |
Dual polyhedron | Rectangular n-fusil |
Properties | convex, zonohedron, isogonal |
In geometry, a hyperrectangle (also called a box, hyperbox, -cell or orthotope[2]), is the generalization of a rectangle (a plane figure) and the rectangular cuboid (a solid figure) to higher dimensions. A necessary and sufficient condition is that it is congruent to the Cartesian product of finite intervals.[3] This means that a -dimensional rectangular solid has each of its edges equal to one of the closed intervals used in the definition. Every -cell is compact.[4][5]
If all of the edges are equal length, it is a hypercube. A hyperrectangle is a special case of a parallelotope.