James Clerk Maxwell

James Clerk Maxwell
Maxwell, c. 1870s
Born(1831-06-13)13 June 1831
Edinburgh, Scotland
Died5 November 1879(1879-11-05) (aged 48)
Cambridge, England
Resting placeParton, Dumfries and Galloway
55°00′24″N 4°02′21″W / 55.006693°N 4.039210°W / 55.006693; -4.039210
Alma mater
Known for
Spouse
(m. 1858)
Awards
Scientific career
FieldsPhysics
Mathematics
Institutions
Academic advisorsWilliam Hopkins
Notable students
1st Cavendish Professor of Physics
In office
1871–1879
Succeeded byLord Rayleigh
Signature

James Clerk Maxwell FRS FRSE (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician[1] who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon. Maxwell's equations for electromagnetism achieved the second great unification in physics,[2] where the first one had been realised by Isaac Newton. Maxwell was also key in the creation of statistical mechanics.[3][4]

With the publication of "A Dynamical Theory of the Electromagnetic Field" in 1865, Maxwell demonstrated that electric and magnetic fields travel through space as waves moving at the speed of light. He proposed that light is an undulation in the same medium that is the cause of electric and magnetic phenomena.[5] The unification of light and electrical phenomena led to his prediction of the existence of radio waves, and the paper contained his final version of his equations, which he had been working on since 1856.[6] As a result of his equations, and other contributions such as introducing an effective method to deal with network problems and linear conductors, he is regarded as a founder of the modern field of electrical engineering.[7] In 1871, Maxwell became the first Cavendish Professor of Physics, serving until his death in 1879.

Maxwell was the first to derive the Maxwell–Boltzmann distribution, a statistical means of describing aspects of the kinetic theory of gases, which he worked on sporadically throughout his career.[8] He is also known for presenting the first durable colour photograph in 1861 and for his foundational work on analysing the rigidity of rod-and-joint frameworks (trusses) like those in many bridges. Maxwell helped to established the CGS system of measurement,[9] and he is responsible for modern dimensional analysis.[10][11] Maxwell is also recognized for laying the groundwork for chaos theory.[12][13] Maxwell correctly predicted that the rings of Saturn were made up of many unattached small fragments.[14] His 1863 paper On Governors serves as an important foundation for control theory and cybernetics, and was also the earliest mathematical analysis on control systems.[15][16] In 1867, he proposed the thought experiment known as Maxwell's demon.[17]

His discoveries helped usher in the era of modern physics, laying the foundations for such fields as relativity, also being the one to introduce the term into physics,[10] and quantum mechanics.[18][19] Many physicists regard Maxwell as the 19th-century scientist having the greatest influence on 20th-century physics. His contributions to the science are considered by many to be of the same magnitude as those of Isaac Newton and Albert Einstein.[20] In the millennium poll—a survey of the 100 most prominent physicists—Maxwell was voted the third greatest physicist of all time, behind only Newton and Einstein,[21] with another survey of rank-and-file physicists also voting him third.[22] On the centenary of Maxwell's birthday, his work was described by Einstein as the "most profound and the most fruitful that physics has experienced since the time of Newton".[23] When Einstein visited the University of Cambridge in 1922, he was told by his host that he had done great things because he stood on Newton's shoulders; Einstein replied: "No I don't. I stand on the shoulders of Maxwell."[24] Tom Siegfried described Maxwell as "one of those once-in-a-century geniuses who perceived the physical world with sharper senses than those around him".[25]

  1. ^ "Topology and Scottish mathematical physics". University of St Andrews. Archived from the original on 12 September 2013. Retrieved 9 September 2013.
  2. ^ Nahin, P.J. (1992). "Maxwell's grand unification". IEEE Spectrum. 29 (3): 45. doi:10.1109/6.123329. S2CID 28991366.
  3. ^ Keithley, Joseph F. (1999). The Story of Electrical and Magnetic Measurements: From 500 BC to the 1940s. New York: IEEE Press. p. 180. ISBN 978-0-7803-1193-0.
  4. ^ Mahon 2003, pp. 82–83, 164.
  5. ^ Maxwell, James Clerk (1865). "A dynamical theory of the electromagnetic field" (PDF). Philosophical Transactions of the Royal Society of London. 155: 459–512. Bibcode:1865RSPT..155..459M. doi:10.1098/rstl.1865.0008. S2CID 186207827. Archived (PDF) from the original on 28 July 2011. (This article accompanied an 8 December 1864 presentation by Maxwell to the Royal Society. His statement that "light and magnetism are affections of the same substance" is at page 499.)
  6. ^ Longair, Malcolm (13 April 2015). "'…a paper …I hold to be great guns': a commentary on Maxwell (1865) 'A dynamical theory of the electromagnetic field'". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2039): 20140473. Bibcode:2015RSPTA.37340473L. doi:10.1098/rsta.2014.0473. ISSN 1364-503X. PMC 4360095. PMID 25750155.
  7. ^ Sarkar, Tapan K.; Salazar-Palma, Magdalena; Sengupta, Dipak L. (2010). "James Clerk Maxwell: The Founder of Electrical Engineering". 2010 Second Region 8 IEEE Conference on the History of Communications. pp. 1–7. doi:10.1109/HISTELCON.2010.5735323. ISBN 978-1-4244-7450-9. S2CID 42295662 – via IEEE.
  8. ^ Johnson, Kevin. "Kinetic Theory of Gases". Maths History. Retrieved 7 November 2023.
  9. ^ Taylor, Barry N., ed. (2001). The International System of Units (SI) (PDF) (7th ed.). National Institute of Standards and Technology. p. 2.
  10. ^ a b Everett, Francis (1 December 2006). "James Clerk Maxwell: a force for physics". Physics World. Retrieved 7 November 2023.
  11. ^ Bramwell, Steven T. (2 August 2017). "The invention of dimension". Nature Physics. 13 (8): 820. Bibcode:2017NatPh..13..820B. doi:10.1038/nphys4229. ISSN 1745-2481. S2CID 125401842.
  12. ^ Hunt, Brian R.; Yorke, James A. (1993). "Maxwell on Chaos" (PDF). Nonlinear Science Today. 3 (1).
  13. ^ Gardini, Laura; Grebogi, Celso; Lenci, Stefano (1 October 2020). "Chaos theory and applications: a retrospective on lessons learned and missed or new opportunities". Nonlinear Dynamics. 102 (2): 643–644. Bibcode:2020NonDy.102..643G. doi:10.1007/s11071-020-05903-0. hdl:2164/17003. ISSN 1573-269X.
  14. ^ Bittanti, Sergio (2 December 2015). "James Clerk Maxwell, a precursor of system identification and control science". International Journal of Control. 88 (12): 2427–2432. Bibcode:2015IJC....88.2427B. doi:10.1080/00207179.2015.1098783. hdl:11311/983132. ISSN 0020-7179.
  15. ^ Mayr, Otto (1971). "Maxwell and the Origins of Cybernetics". Isis. 62 (4): 425–444. doi:10.1086/350788. ISSN 0021-1753. JSTOR 229816.
  16. ^ Mahon 2003, pp. 2–3, 140.
  17. ^ Hemmo, Meir; Shenker, Orly (7 March 2016). Maxwell's Demon. Oxford University Press. doi:10.1093/oxfordhb/9780199935314.013.63.
  18. ^ Mahon 2003, p. 2.
  19. ^ Qadir, Asghar; Mason, D. P. (2015). "Sesquicentennial of the presentation by James Clerk Maxwell of his paper "A Dynamical Theory of the Electromagnetic Field" to the Royal Society of London". International Journal of Modern Physics: Conference Series. 38: 1560070. doi:10.1142/S2010194515600708. ISSN 2010-1945.
  20. ^ Tolstoy, Ivan (1981). James Clerk Maxwell : a biography. Chicago: University of Chicago Press. p. 2. ISBN 0-226-80785-1. OCLC 8688302.
  21. ^ "Einstein the greatest". BBC News. BBC. 29 November 1999. Archived from the original on 11 January 2009. Retrieved 2 April 2010.
  22. ^ "Newton tops PhysicsWeb poll". Physics World. 29 November 1999. Retrieved 23 November 2024.
  23. ^ McFall, Patrick (23 April 2006). "Brainy young James wasn't so daft after all". The Sunday Post. maxwellyear2006.org. Archived from the original on 20 June 2013. Retrieved 29 March 2013.
  24. ^ Mary Shine Thompson, 2009, The Fire l' the Flint, p. 103; Four Courts
  25. ^ Siegfried, Tom (2006). A Beautiful Math: John Nash, Game Theory, and the Modern Quest for a Code of Nature. Joseph Henry Press. p. 135. ISBN 978-0309101929.

James Clerk Maxwell

Dodaje.pl - Ogłoszenia lokalne