Lenz's law

Lenz's law states that the direction of the electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field. It is named after physicist Heinrich Lenz, who formulated it in 1834.[1]

It is a qualitative law that specifies the direction of induced current, but states nothing about its magnitude. Lenz's law predicts the direction of many effects in electromagnetism, such as the direction of voltage induced in an inductor or wire loop by a changing current, or the drag force of eddy currents exerted on moving objects in the magnetic field.

Lenz's law may be seen as analogous to Newton's third law in classical mechanics[2][3] and Le Chatelier's principle in chemistry.[4]

  1. ^ Lenz, E. (1834), "Ueber die Bestimmung der Richtung der durch elektodynamische Vertheilung erregten galvanischen Ströme", Annalen der Physik und Chemie, 107 (31), pp. 483–494. A partial translation of the paper is available in Magie, W. M. (1963), A Source Book in Physics, Harvard: Cambridge MA, pp. 511–513.
  2. ^ Schmitt, Ron. Electromagnetics explained. 2002. Retrieved 16 July 2010.
  3. ^ Waygood, Adrian (2013). An Introduction to Electrical Science. Taylor & Francis. ISBN 9781135071134.
  4. ^ Thomsen, Volker B.E. (2000). "LeChâtelier's Principle in the Sciences". J. Chem. Educ. 77 (2): 173. Bibcode:2000JChEd..77..173T. doi:10.1021/ed077p173.

Lenz's law

Dodaje.pl - Ogłoszenia lokalne