Manganese nodule

Manganese nodule
Nodules on the seabed
Ferromanganese nodules found on the seafloor

Polymetallic nodules, also called manganese nodules, are mineral concretions on the sea bottom formed of concentric layers of iron and manganese hydroxides around a core. As nodules can be found in vast quantities, and contain valuable metals, deposits have been identified as a potential economic interest.[1] Depending on their composition and authorial choice, they may also be called ferromanganese nodules. Ferromanganese nodules are mineral concretions composed of silicates and insoluble iron and manganese oxides that form on the ocean seafloor and terrestrial soils. The formation mechanism involves a series of redox oscillations driven by both abiotic and biotic processes.[2] As a byproduct of pedogenesis, the specific composition of a ferromanganese nodule depends on the composition of the surrounding soil.[2] The formation mechanisms and composition of the nodules allow for couplings with biogeochemical cycles beyond iron and manganese.[2] The high relative abundance of nickel, copper, manganese, and other rare metals in nodules has increased interest in their use as a mining resource.[3][4]

Nodules vary in size from tiny particles visible only under a microscope to large pellets more than 20 centimetres (8 in) across. However, most nodules are between 3 and 10 cm (1 and 4 in) in diameter, about the size of hen's eggs or potatoes. Their surface textures vary from smooth to rough. They frequently have botryoidal (mammillated or knobby) texture and vary from spherical in shape to typically oblate, sometimes prolate, or are otherwise irregular. The bottom surface, buried in sediment, is generally rougher than the top due to a different type of growth.[5]

  1. ^ Mero, John (1965). The mineral resources of the sea. Elsevier Oceanography Series.[page needed]
  2. ^ a b c Huang, Laiming (September 2022). "Pedogenic ferromanganese nodules and their impacts on nutrient cycles and heavy metal sequestration". Earth-Science Reviews. 232: 104147. Bibcode:2022ESRv..23204147H. doi:10.1016/j.earscirev.2022.104147. S2CID 251353813.
  3. ^ Verlaan, Philomène A.; Cronan, David S. (April 2022). "Origin and variability of resource-grade marine ferromanganese nodules and crusts in the Pacific Ocean: A review of biogeochemical and physical controls". Geochemistry. 82 (1): 125741. Bibcode:2022ChEG...82l5741V. doi:10.1016/j.chemer.2021.125741. S2CID 234066886.
  4. ^ Hein, James R.; Mizell, Kira; Koschinsky, Andrea; Conrad, Tracey A. (June 2013). "Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources". Ore Geology Reviews. 51: 1–14. Bibcode:2013OGRv...51....1H. doi:10.1016/j.oregeorev.2012.12.001.
  5. ^ International Seabed Authority (2010). A Geological Model of Polymetallic Nodule Deposits in the Clarion–Clipperton Fracture Zone and Prospector's Guide for Polymetallic Nodule Deposits in the Clarion–Clipperton Fracture Zone. International Seabed Authority. ISBN 978-976-95268-2-2.[page needed]

Manganese nodule

Dodaje.pl - Ogłoszenia lokalne