N-Butyllithium

n-Butyllithium
n-Butyllithium tetramer
n-Butyllithium hexamer

Close-up of the delocalized bonds between butyl and lithium
Names
IUPAC name
butyllithium, tetra-μ3-butyl-tetralithium
Other names
NBL, BuLi,
1-lithiobutane
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.003.363 Edit this at Wikidata
UNII
  • InChI=1S/C4H9.Li/c1-3-4-2;/h1,3-4H2,2H3; checkY
    Key: MZRVEZGGRBJDDB-UHFFFAOYSA-N checkY
  • InChI=1/C4H9.Li/c1-3-4-2;/h1,3-4H2,2H3;/rC4H9Li/c1-2-3-4-5/h2-4H2,1H3
    Key: MZRVEZGGRBJDDB-NESCHKHYAE
  • CCCC[Li]
Properties
C4H9Li
Molar mass 64.06 g·mol−1
Appearance colorless liquid
unstable
usually obtained
as solution
Density 0.68 g/cm3, solvent defined
Melting point −76 °C (−105 °F; 197 K) (<273 K)
Boiling point 80 C
Exothermic decomposition
Solubility Ethers such as THF, hydrocarbons
Acidity (pKa) 50 (of the conjugate acid)[1]
Structure
tetrameric in solution
0 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Pyrophoric (spontaneously combusts in air),
decomposes to corrosive LiOH
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
3
4
3
Related compounds
sec-butyllithium
tert-butyllithium
hexyllithium
methyllithium
Related compounds
lithium hydroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Glass bottles containing butyllithium

n-Butyllithium C4H9Li (abbreviated n-BuLi) is an organolithium reagent. It is widely used as a polymerization initiator in the production of elastomers such as polybutadiene or styrene-butadiene-styrene (SBS). Also, it is broadly employed as a strong base (superbase) in the synthesis of organic compounds as in the pharmaceutical industry.

Butyllithium is commercially available as solutions (15%, 25%, 1.5 M, 2 M, 2.5 M, 10 M, etc.) in alkanes such as pentane, hexanes, and heptanes. Solutions in diethyl ether and THF can be prepared, but are not stable enough for storage. Annual worldwide production and consumption of butyllithium and other organolithium compounds is estimated at 2000 to 3000 tonnes.[2]

Although butyllithium is colorless, n-butyllithium is usually encountered as a pale yellow solution in alkanes. Such solutions are stable indefinitely if properly stored,[3] but in practice, they degrade upon aging. Fine white precipitate (lithium hydride) is deposited and the color changes to orange.[3][4]

  1. ^ Bernier, David. "Some useful pKa values". Org@Work. Archived from the original on 9 May 2017. Retrieved 26 May 2017.
  2. ^ Schwindeman, James A. (1 August 2014). "Preparation, Properties, and Safe Handling of Commercial Organolithiums: Alkyllithiums, Lithium sec-Organoamides, and Lithium Alkoxides". Organic Process Research & Development. 18 (10): 1192–1210. doi:10.1021/op500161b.
  3. ^ a b Brandsma, L.; Verkruijsse, H. D. (1987). Preparative Polar Organometallic Chemistry I. Berlin: Springer-Verlag. ISBN 3-540-16916-4..
  4. ^ "n-Butyllithium solution". sigmaaldrich.com. Retrieved 17 August 2023.

N-Butyllithium

Dodaje.pl - Ogłoszenia lokalne