Neuro-symbolic AI

Neuro-symbolic AI is a type of artificial intelligence that integrates neural and symbolic AI architectures to address the weaknesses of each, providing a robust AI capable of reasoning, learning, and cognitive modeling. As argued by Leslie Valiant[1] and others,[2][3] the effective construction of rich computational cognitive models demands the combination of symbolic reasoning and efficient machine learning. Gary Marcus argued, "We cannot construct rich cognitive models in an adequate, automated way without the triumvirate of hybrid architecture, rich prior knowledge, and sophisticated techniques for reasoning."[4] Further, "To build a robust, knowledge-driven approach to AI we must have the machinery of symbol manipulation in our toolkit. Too much useful knowledge is abstract to proceed without tools that represent and manipulate abstraction, and to date, the only known machinery that can manipulate such abstract knowledge reliably is the apparatus of symbol manipulation."[5]

Henry Kautz,[6] Francesca Rossi,[7] and Bart Selman[8] also argued for a synthesis. Their arguments attempt to address the two kinds of thinking, as discussed in Daniel Kahneman's book Thinking Fast and Slow. It describes cognition as encompassing two components: System 1 is fast, reflexive, intuitive, and unconscious. System 2 is slower, step-by-step, and explicit. System 1 is used for pattern recognition. System 2 handles planning, deduction, and deliberative thinking. In this view, deep learning best handles the first kind of cognition while symbolic reasoning best handles the second kind. Both are needed for a robust, reliable AI that can learn, reason, and interact with humans to accept advice and answer questions. Such dual-process models with explicit references to the two contrasting systems have been worked on since the 1990s, both in AI and in Cognitive Science, by multiple researchers.[9]

  1. ^ Valiant 2008.
  2. ^ Garcez et al. 2015.
  3. ^ D'Avila Garcez, Artur S.; Lamb, Luis C.; Gabbay, Dov M. (2009). Neural-symbolic cognitive reasoning. Cognitive technologies. Springer. ISBN 978-3-540-73245-7.
  4. ^ Marcus 2020, p. 44.
  5. ^ Marcus & Davis 2019, p. 17.
  6. ^ Kautz 2020.
  7. ^ Rossi 2022.
  8. ^ Selman 2022.
  9. ^ Sun 1995.

Neuro-symbolic AI

Dodaje.pl - Ogłoszenia lokalne