Ocean surface ecosystem

By-the-wind sailors Velella sp. covering the ocean's surface

Organisms that live freely at the ocean surface, termed neuston, include keystone organisms like the golden seaweed Sargassum that makes up the Sargasso Sea, floating barnacles, marine snails, nudibranchs, and cnidarians. Many ecologically and economically important fish species live as or rely upon neuston. Species at the surface are not distributed uniformly; the ocean's surface provides habitat for unique neustonic communities and ecoregions found at only certain latitudes and only in specific ocean basins. But the surface is also on the front line of climate change and pollution. Life on the ocean's surface connects worlds. From shallow waters to the deep sea, the open ocean to rivers and lakes, numerous terrestrial and marine species depend on the surface ecosystem and the organisms found there.[1]

The ocean's surface acts like a skin between the atmosphere above and the water below, and hosts an ecosystem unique to this environment. This sun-drenched habitat can be defined as roughly one metre in depth, as nearly half of UV-B is attenuated within this first meter.[2] Organisms here must contend with wave action and unique chemical [3][4][5] and physical properties.[6] The surface is utilised by a wide range of species, from various fish and cetaceans, to species that ride on ocean debris (termed rafters).[7][8][9]

Most prominently, the surface is home to a unique community of free-living organisms, termed neuston (from the Greek word υεω, which means both to swim and to float). Floating organisms are also sometimes referred to as pleuston, though neuston is more commonly used. Despite the diversity and importance of the ocean's surface in connecting disparate habitats, and the risks it faces, not a lot is known about neustonic life.[1]

  1. ^ a b Helm, Rebecca R. (28 April 2021). "The mysterious ecosystem at the ocean's surface". PLOS Biology. 19 (4). Public Library of Science (PLoS): e3001046. doi:10.1371/journal.pbio.3001046. ISSN 1545-7885. PMC 8081451. PMID 33909611. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  2. ^ Fleischmann, Esther M. (1989). "The measurement and penetration of ultraviolet radiation into tropical marine water". Limnology and Oceanography. 34 (8): 1623–1629. Bibcode:1989LimOc..34.1623F. doi:10.4319/lo.1989.34.8.1623. S2CID 86478743.
  3. ^ Hardy, J.T. (1982). "The sea surface microlayer: Biology, chemistry and anthropogenic enrichment". Progress in Oceanography. 11 (4): 307–328. Bibcode:1982PrOce..11..307H. doi:10.1016/0079-6611(82)90001-5.
  4. ^ Wurl, Oliver; Holmes, Michael (2008). "The gelatinous nature of the sea-surface microlayer". Marine Chemistry. 110 (1–2): 89–97. Bibcode:2008MarCh.110...89W. doi:10.1016/j.marchem.2008.02.009.
  5. ^ Cunliffe, Michael; Murrell, J Colin (2009). "The sea-surface microlayer is a gelatinous biofilm". The ISME Journal. 3 (9): 1001–1003. doi:10.1038/ismej.2009.69. PMID 19554040. S2CID 32923256.
  6. ^ Wurl, Oliver; Ekau, Werner; Landing, William M.; Zappa, Christopher J. (2017). "Sea surface microlayer in a changing ocean – A perspective". Elementa: Science of the Anthropocene. 5. doi:10.1525/elementa.228.
  7. ^ Cite error: The named reference ThielI was invoked but never defined (see the help page).
  8. ^ Cite error: The named reference ThielII was invoked but never defined (see the help page).
  9. ^ Cite error: The named reference ThielIII was invoked but never defined (see the help page).

Ocean surface ecosystem

Dodaje.pl - Ogłoszenia lokalne