Paleogene

Paleogene
A map of Earth as it appeared 45 million years ago during the Paleogene Period, Eocene Epoch
Chronology
Etymology
Name formalityFormal
Alternate spelling(s)Palaeogene, Palæogene
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitPeriod
Stratigraphic unitSystem
Time span formalityFormal
Lower boundary definitionIridium enriched layer associated with a major meteorite impact and subsequent K-Pg extinction event.
Lower boundary GSSPEl Kef Section, El Kef, Tunisia
36°09′13″N 8°38′55″E / 36.1537°N 8.6486°E / 36.1537; 8.6486
Lower GSSP ratified1991[3]
Upper boundary definition
Upper boundary GSSPLemme-Carrosio Section, Carrosio, Italy
44°39′32″N 8°50′11″E / 44.6589°N 8.8364°E / 44.6589; 8.8364
Upper GSSP ratified1996[4]
Atmospheric and climatic data
Mean atmospheric O2 contentc. 26 vol %
(125 % of modern)
Mean atmospheric CO2 contentc. 500 ppm
(1.8 times pre-industrial)
Mean surface temperaturec. 18 °C
(4.5 °C above pre-industrial)

The Paleogene Period (IPA: /ˈpli.ən, -li.-, ˈpæli-/ PAY-lee-ə-jeen, -⁠lee-oh-, PAL-ee-; also spelled Palaeogene or Palæogene) is a geologic period and system that spans 43 million years from the end of the Cretaceous Period 66 Ma (million years ago) to the beginning of the Neogene Period 23.03 Ma. It is the first period of the Cenozoic Era, the tenth period of the Phanerozoic and is divided into the Paleocene, Eocene, and Oligocene epochs. The earlier term Tertiary Period was used to define the time now covered by the Paleogene Period and subsequent Neogene Period; despite no longer being recognized as a formal stratigraphic term, "Tertiary" still sometimes remains in informal use.[5] Paleogene is often abbreviated "Pg", although the United States Geological Survey uses the abbreviation "Pe" for the Paleogene on the Survey's geologic maps.[6][7]

Much of the world's modern vertebrate diversity originated in a rapid surge of diversification in the early Paleogene, as survivors of the Cretaceous–Paleogene extinction event took advantage of empty ecological niches left behind by the extinction of the non-avian dinosaurs, pterosaurs, marine reptiles, and primitive fish groups. Mammals continued to diversify from relatively small, simple forms into a highly diverse group ranging from small-bodied forms to very large ones, radiating into multiple orders and colonizing the air and marine ecosystems by the Eocene.[8] Birds, the only surviving group of dinosaurs, quickly diversified from the very few neognath and paleognath clades that survived the extinction event, also radiating into multiple orders, colonizing different ecosystems and achieving an extreme level of morphological diversity.[9] Percomorph fish, the most diverse group of vertebrates today, first appeared near the end of the Cretaceous but saw a very rapid radiation into their modern order and family-level diversity during the Paleogene, achieving a diverse array of morphologies.[10]

The Paleogene is marked by considerable changes in climate from the Paleocene–Eocene Thermal Maximum, through global cooling during the Eocene to the first appearance of permanent ice sheets in the Antarctic at the beginning of the Oligocene.[11]

  1. ^ Zachos, J. C.; Kump, L. R. (2005). "Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene". Global and Planetary Change. 47 (1): 51–66. Bibcode:2005GPC....47...51Z. doi:10.1016/j.gloplacha.2005.01.001.
  2. ^ "International Chronostratigraphic Chart" (PDF). International Commission on Stratigraphy. September 2023. Retrieved December 16, 2024.
  3. ^ Molina, Eustoquio; Alegret, Laia; Arenillas, Ignacio; José A. Arz; Gallala, Njoud; Hardenbol, Jan; Katharina von Salis; Steurbaut, Etienne; Vandenberghe, Noel; Dalila Zaghibib-Turki (2006). "The Global Boundary Stratotype Section and Point for the base of the Danian Stage (Paleocene, Paleogene, "Tertiary", Cenozoic) at El Kef, Tunisia - Original definition and revision". Episodes. 29 (4): 263–278. doi:10.18814/epiiugs/2006/v29i4/004.
  4. ^ Steininger, Fritz F.; M. P. Aubry; W. A. Berggren; M. Biolzi; A. M. Borsetti; Julie E. Cartlidge; F. Cati; R. Corfield; R. Gelati; S. Iaccarino; C. Napoleone; F. Ottner; F. Rögl; R. Roetzel; S. Spezzaferri; F. Tateo; G. Villa; D. Zevenboom (1997). "The Global Stratotype Section and Point (GSSP) for the base of the Neogene" (PDF). Episodes. 20 (1): 23–28. doi:10.18814/epiiugs/1997/v20i1/005.
  5. ^ "GeoWhen Database – What Happened to the Tertiary?". www.stratigraphy.org. Archived from the original on 2011-09-29. Retrieved 2011-07-13.
  6. ^ Federal Geographic Data Committee. "FGDC Digital Cartographic Standard for Geologic Map Symbolization" (PDF). The National Geologic Map Database. United States Geological Survey. Retrieved 29 January 2022.
  7. ^ Orndorff, R.C. (20 July 2010). "Divisions of Geologic Time—Major Chronostratigraphic and Geochronologic Units" (PDF). United States Geological Survey. Retrieved 29 January 2022.
  8. ^ Meredith, R. W.; Janecka, J. E.; Gatesy, J.; Ryder, O. A.; Fisher, C. A.; Teeling, E. C.; Goodbla, A.; Eizirik, E.; Simao, T. L. L.; Stadler, T.; Rabosky, D. L.; Honeycutt, R. L.; Flynn, J. J.; Ingram, C. M.; Steiner, C.; Williams, T. L.; Robinson, T. J.; Burk-Herrick, A.; Westerman, M.; Ayoub, N. A.; Springer, M. S.; Murphy, W. J. (28 October 2011). "Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification". Science. 334 (6055): 521–524. Bibcode:2011Sci...334..521M. doi:10.1126/science.1211028. PMID 21940861. S2CID 38120449.
  9. ^ Stiller, Josefin; Feng, Shaohong; Chowdhury, Al-Aabid; Rivas-González, Iker; Duchêne, David A.; Fang, Qi; Deng, Yuan; Kozlov, Alexey; Stamatakis, Alexandros; Claramunt, Santiago; Nguyen, Jacqueline M. T.; Ho, Simon Y. W.; Faircloth, Brant C.; Haag, Julia; Houde, Peter (2024). "Complexity of avian evolution revealed by family-level genomes". Nature. 629 (8013): 851–860. Bibcode:2024Natur.629..851S. doi:10.1038/s41586-024-07323-1. ISSN 1476-4687. PMC 11111414. PMID 38560995.
  10. ^ Near, Thomas J.; Dornburg, Alex; Eytan, Ron I.; Keck, Benjamin P.; Smith, W. Leo; Kuhn, Kristen L.; Moore, Jon A.; Price, Samantha A.; Burbrink, Frank T.; Friedman, Matt; Wainwright, Peter C. (2013-07-30). "Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes". Proceedings of the National Academy of Sciences. 110 (31): 12738–12743. Bibcode:2013PNAS..11012738N. doi:10.1073/pnas.1304661110. ISSN 0027-8424. PMC 3732986. PMID 23858462.
  11. ^ Cite error: The named reference Scotese-2021 was invoked but never defined (see the help page).

Paleogene

Dodaje.pl - Ogłoszenia lokalne