Posterior predictive distribution

In Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values.[1][2]

Given a set of N i.i.d. observations , a new value will be drawn from a distribution that depends on a parameter , where is the parameter space.

It may seem tempting to plug in a single best estimate for , but this ignores uncertainty about , and because a source of uncertainty is ignored, the predictive distribution will be too narrow. Put another way, predictions of extreme values of will have a lower probability than if the uncertainty in the parameters as given by their posterior distribution is accounted for.

A posterior predictive distribution accounts for uncertainty about . The posterior distribution of possible values depends on :

And the posterior predictive distribution of given is calculated by marginalizing the distribution of given over the posterior distribution of given :

Because it accounts for uncertainty about , the posterior predictive distribution will in general be wider than a predictive distribution which plugs in a single best estimate for .

  1. ^ "Posterior Predictive Distribution". SAS. Retrieved 19 July 2014.
  2. ^ Gelman, Andrew; Carlin, John B.; Stern, Hal S.; Dunson, David B.; Vehtari, Aki; Rubin, Donald B. (2013). Bayesian Data Analysis (Third ed.). Chapman and Hall/CRC. p. 7. ISBN 978-1-4398-4095-5.

Posterior predictive distribution

Dodaje.pl - Ogłoszenia lokalne