Among the characteristics of RNA that suggest its original prominence are that:
Like DNA, RNA can store and replicate genetic information. Although RNA is considerably more fragile than DNA, some ancient RNAs may have evolved the ability to methylate other RNAs to protect them.[4] The concurrent formation of all four RNA building blocks further strengthens the hypothesis.[5]
Enzymes made of RNA (ribozymes) can catalyze (start or accelerate) chemical reactions that are critical for life,[6] so it is conceivable that in an RNA world, ribozymes might have preceded enzymes made of protein.
Many coenzymes that have fundamental roles in cellular life, such as acetyl-CoA, NADH, FADH, and F420, are structurally strikingly similar to RNA and so may be surviving remnants of covalently bound coenzymes in an RNA world.[7]
One of the most critical components of cells, the ribosome, is composed primarily of RNA.
Although alternative chemical paths to life have been proposed,[8] and RNA-based life may not have been the first life to exist, [3][9] the RNA world hypothesis seems to be the most favored abiogenesis paradigm. However, even proponents agree that there is still not conclusive evidence to completely falsify other paradigms and hypotheses.[2][10][11] Regardless of its plausibility in a prebiotic scenario, the RNA world can serve as a model system for studying the origin of life.[12]
If the RNA world existed, it was probably followed by an age characterized by the evolution of ribonucleoproteins (RNP world),[3] which in turn ushered in the era of DNA and longer proteins. DNA has greater stability and durability than RNA, which may explain why it became the predominant information storage molecule.[13] Protein enzymes may have replaced RNA-based ribozymes as biocatalysts because the greater abundance and diversity of the monomers of which they are built makes them more versatile. As some cofactors contain both nucleotide and amino-acid characteristics, it may be that amino acids, peptides, and finally proteins initially were cofactors for ribozymes.[7]
^ abNeveu M, Kim HJ, Benner SA (April 2013). "The "strong" RNA world hypothesis: fifty years old". Astrobiology. 13 (4): 391–403. Bibcode:2013AsBio..13..391N. doi:10.1089/ast.2012.0868. PMID23551238. [The RNA world's existence] has broad support within the community today.
^Copley SD, Smith E, Morowitz HJ (December 2007). "The origin of the RNA world: co-evolution of genes and metabolism". Bioorganic Chemistry. 35 (6): 430–443. doi:10.1016/j.bioorg.2007.08.001. PMID17897696. The proposal that life on Earth arose from an RNA World is the one most researched in the topic of Abiogenesis.