Reservoir computing

Reservoir computing is a framework for computation derived from recurrent neural network theory that maps input signals into higher dimensional computational spaces through the dynamics of a fixed, non-linear system called a reservoir.[1] After the input signal is fed into the reservoir, which is treated as a "black box," a simple readout mechanism is trained to read the state of the reservoir and map it to the desired output.[1] The first key benefit of this framework is that training is performed only at the readout stage, as the reservoir dynamics are fixed.[1] The second is that the computational power of naturally available systems, both classical and quantum mechanical, can be used to reduce the effective computational cost.[2]

  1. ^ a b c Tanaka, Gouhei; Yamane, Toshiyuki; Héroux, Jean Benoit; Nakane, Ryosho; Kanazawa, Naoki; Takeda, Seiji; Numata, Hidetoshi; Nakano, Daiju; Hirose, Akira (2019). "Recent advances in physical reservoir computing: A review". Neural Networks. 115: 100–123. arXiv:1808.04962. doi:10.1016/j.neunet.2019.03.005. ISSN 0893-6080. PMID 30981085.
  2. ^ Röhm, André; Lüdge, Kathy (2018-08-03). "Multiplexed networks: reservoir computing with virtual and real nodes". Journal of Physics Communications. 2 (8): 085007. arXiv:1802.08590. Bibcode:2018JPhCo...2h5007R. doi:10.1088/2399-6528/aad56d. ISSN 2399-6528.

Reservoir computing

Dodaje.pl - Ogłoszenia lokalne