Scale-free network

Degree distribution for a network with 150000 vertices and mean degree = 6 created using the Barabási–Albert model (blue dots). The distribution follows an analytical form given by the ratio of two gamma functions (black line) which approximates as a power-law.

A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as

where is a parameter whose value is typically in the range (wherein the second moment (scale parameter) of is infinite but the first moment is finite), although occasionally it may lie outside these bounds.[1][2] The name "scale-free" could be explained by the fact that some moments of the degree distribution are not defined, so that the network does not have a characteristic scale or "size".

Many networks have been reported to be scale-free, although statistical analysis has refuted many of these claims and seriously questioned others.[3][4] Additionally, some have argued that simply knowing that a degree-distribution is fat-tailed is more important than knowing whether a network is scale-free according to statistically rigorous definitions.[5][6] Preferential attachment and the fitness model have been proposed as mechanisms to explain conjectured power law degree distributions in real networks. Alternative models such as super-linear preferential attachment and second-neighbour preferential attachment may appear to generate transient scale-free networks, but the degree distribution deviates from a power law as networks become very large.[7][8]

  1. ^ Onnela, J.-P.; Saramaki, J.; Hyvonen, J.; Szabo, G.; Lazer, D.; Kaski, K.; Kertesz, J.; Barabasi, A. -L. (2007). "Structure and tie strengths in mobile communication networks". Proceedings of the National Academy of Sciences. 104 (18): 7332–7336. arXiv:physics/0610104. Bibcode:2007PNAS..104.7332O. doi:10.1073/pnas.0610245104. PMC 1863470. PMID 17456605.
  2. ^ Choromański, K.; Matuszak, M.; MiȩKisz, J. (2013). "Scale-Free Graph with Preferential Attachment and Evolving Internal Vertex Structure". Journal of Statistical Physics. 151 (6): 1175–1183. Bibcode:2013JSP...151.1175C. doi:10.1007/s10955-013-0749-1.
  3. ^ Clauset, Aaron; Cosma Rohilla Shalizi; M. E. J Newman (2009). "Power-law distributions in empirical data". SIAM Review. 51 (4): 661–703. arXiv:0706.1062. Bibcode:2009SIAMR..51..661C. doi:10.1137/070710111. S2CID 9155618.
  4. ^ Broido, Anna; Aaron Clauset (2019-03-04). "Scale-free networks are rare". Nature Communications. 10 (1): 1017. arXiv:1801.03400. Bibcode:2019NatCo..10.1017B. doi:10.1038/s41467-019-08746-5. PMC 6399239. PMID 30833554.
  5. ^ Holme, Petter (December 2019). "Rare and everywhere: Perspectives on scale-free networks". Nature Communications. 10 (1): 1016. Bibcode:2019NatCo..10.1016H. doi:10.1038/s41467-019-09038-8. PMC 6399274. PMID 30833568.
  6. ^ Stumpf, M. P. H.; Porter, M. A. (10 February 2012). "Critical Truths About Power Laws". Science. 335 (6069): 665–666. Bibcode:2012Sci...335..665S. doi:10.1126/science.1216142. PMID 22323807. S2CID 206538568.
  7. ^ Krapivsky, Paul; Krioukov, Dmitri (21 August 2008). "Scale-free networks as preasymptotic regimes of superlinear preferential attachment". Physical Review E. 78 (2): 026114. arXiv:0804.1366. Bibcode:2008PhRvE..78b6114K. doi:10.1103/PhysRevE.78.026114. PMID 18850904. S2CID 14292535.
  8. ^ Falkenberg, Max; Lee, Jong-Hyeok; Amano, Shun-ichi; Ogawa, Ken-ichiro; Yano, Kazuo; Miyake, Yoshihiro; Evans, Tim S.; Christensen, Kim (18 June 2020). "Identifying time dependence in network growth". Physical Review Research. 2 (2): 023352. arXiv:2001.09118. Bibcode:2020PhRvR...2b3352F. doi:10.1103/PhysRevResearch.2.023352.

Scale-free network

Dodaje.pl - Ogłoszenia lokalne