Schaefer's dichotomy theorem

In computational complexity theory, a branch of computer science, Schaefer's dichotomy theorem, proved by Thomas Jerome Schaefer, states necessary and sufficient conditions under which a finite set S of relations over the Boolean domain yields polynomial-time or NP-complete problems when the relations of S are used to constrain some of the propositional variables.[1] It is called a dichotomy theorem because the complexity of the problem defined by S is either in P or is NP-complete, as opposed to one of the classes of intermediate complexity that is known to exist (assuming P ≠ NP) by Ladner's theorem.

Special cases of Schaefer's dichotomy theorem include the NP-completeness of SAT (the Boolean satisfiability problem) and its two popular variants 1-in-3 SAT and not-all-equal 3SAT (often denoted by NAE-3SAT). In fact, for these two variants of SAT, Schaefer's dichotomy theorem shows that their monotone versions (where negations of variables are not allowed) are also NP-complete.

  1. ^ Schaefer, Thomas J. (1978). "The complexity of satisfiability problems". Proceedings of the tenth annual ACM symposium on Theory of computing - STOC '78. pp. 216–226. doi:10.1145/800133.804350.

Schaefer's dichotomy theorem

Dodaje.pl - Ogłoszenia lokalne