The smart grid is an enhancement of the 20th century electrical grid, using two-way communications and distributed so-called intelligent devices.[1] Two-way flows of electricity and information could improve the delivery network. Research is mainly focused on three systems of a smart grid – the infrastructure system, the management system, and the protection system.[2] Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.[3]
The smart grid represents the full suite of current and proposed responses to the challenges of electricity supply. Numerous contributions to the overall improvement of energy infrastructure efficiency are anticipated from the deployment of smart grid technology, in particular including demand-side management. The improved flexibility of the smart grid permits greater penetration of highly variable renewable energy sources such as solar power and wind power, even without the addition of energy storage. Smart grids could also monitor/control residential devices that are noncritical during periods of peak power consumption, and return their function during nonpeak hours.[4]
A smart grid includes a variety of operation and energy measures:
Electric surplus distribution by power lines and auto-smart switch
Sufficient utility grade fiber broadband to connect and monitor the above, with wireless as a backup. Sufficient spare if "dark" capacity to ensure failover, often leased for revenue.[5][6]
Concerns with smart grid technology mostly focus on smart meters, items enabled by them, and general security issues. Roll-out of smart grid technology also implies a fundamental re-engineering of the electricity services industry, although typical usage of the term is focused on the technical infrastructure.[7]
Smart grid policy is organized in Europe as Smart Grid European Technology Platform.[8] Policy in the United States is described in Title 42 of the United States Code.[9]