Strain rate

Strain rate
In SI base unitss-1
Dimension

In mechanics and materials science, strain rate is the time derivative of strain of a material. Strain rate has dimension of inverse time and SI units of inverse second, s−1 (or its multiples).

The strain rate at some point within the material measures the rate at which the distances of adjacent parcels of the material change with time in the neighborhood of that point. It comprises both the rate at which the material is expanding or shrinking (expansion rate), and also the rate at which it is being deformed by progressive shearing without changing its volume (shear rate). It is zero if these distances do not change, as happens when all particles in some region are moving with the same velocity (same speed and direction) and/or rotating with the same angular velocity, as if that part of the medium were a rigid body.

The strain rate is a concept of materials science and continuum mechanics that plays an essential role in the physics of fluids and deformable solids. In an isotropic Newtonian fluid, in particular, the viscous stress is a linear function of the rate of strain, defined by two coefficients, one relating to the expansion rate (the bulk viscosity coefficient) and one relating to the shear rate (the "ordinary" viscosity coefficient). In solids, higher strain rates can often cause normally ductile materials to fail in a brittle manner.[1]

  1. ^ Askeland, Donald (2016). The science and engineering of materials. Wright, Wendelin J. (Seventh ed.). Boston, MA: Cengage Learning. p. 184. ISBN 978-1-305-07676-1. OCLC 903959750.

Strain rate

Dodaje.pl - Ogłoszenia lokalne