Tensor product

In mathematics, the tensor product of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map that maps a pair to an element of denoted .

An element of the form is called the tensor product of v and w. An element of is a tensor, and the tensor product of two vectors is sometimes called an elementary tensor or a decomposable tensor. The elementary tensors span in the sense that every element of is a sum of elementary tensors. If bases are given for V and W, a basis of is formed by all tensor products of a basis element of V and a basis element of W.

The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from into another vector space Z factors uniquely through a linear map (see the section below titled 'Universal property'), i.e. the bilinear map is associated to a unique linear map from the tensor product to Z.

Tensor products are used in many application areas, including physics and engineering. For example, in general relativity, the gravitational field is described through the metric tensor, which is a tensor field with one tensor at each point of the space-time manifold, and each belonging to the tensor product of the cotangent space at the point with itself.


Tensor product

Dodaje.pl - Ogłoszenia lokalne