Matematikan, multzo bat, metrika batekin batera espazio metrikoa izango da, non metrikak multzo horretako bi puntu edo elementuren arteko distantzia definituko digun. Ideia gisa, metrikak honako propietateak beteko ditu:
Espazio bati metrika atxikitzean, zenbait kontzeptu topologiko ondorioztatu ditzakegu; multzo ireki eta itxiak esaterako, eta honek, espazio topologikoen azterketa abstraktuago batera garamatza.
Espazio metriko ezagunena, espazio tridimentsionala da. Izan ere, metrika kontzeptua, metrika euklidearraren orokorpen bat da, metrika honen lau propietate ezagunetatik abiatuta. Metrika euklidearrak, distantzia, bi puntu lotzen dituen segmentuaren luzera bezala definitzen du. Geometria eliptikoan zein geometría hiperbolikoan, beste espazio metriko batzuk aurki ditzakegu non esfera batean distantzia angeluen bidez neurtuta, metrika definitzen dugun.
1906. urtean, Maurice Fréchet matematikari frantziarrak, Felix Hausdorff alemaniarraren eraginpean, Sur quelques points du calcul fonctionnel izeneko lanean definitu eta landu zuen lehen aldiz espazio metrikoaren kontzeptua.