Reynolds zenbakia (Re) fluidoen dinamikan dimentsio gabeko zenbaki garrantzitsuenetarikoa da. Zenbaki honek indar inertzialen eta indar biskosoen arteko erlazioa ematen du. Horrela, Reynolds zenbaki berdina duten bi egoera dinamikoki antzerakoak dira, eta indar guztiak proportzionalak, beraz baten azterketa baliogarria da bestearen ezaugarriak jakiteko. Ezaugarri hau oso erabilia da ingenieritzako hainbat arlotan, saiatu nahi den gorputzaren eredu txikiago bat erabili daitekeelako, Reynolds zenbaki berdinean saiakuntzak eginez.
Indar inertzialak masa eta abiaduraren deribatuaren arteko produktua dira. ρ fluidoaren dentsitatea baldin bada, eta L luzera esanguratsu bat, masa ρL3-ri proportzionala izango da. Abiadura v izanik, v eta denbora esanguratsu baten (L/v) arteko proportzioak abiaduraren deribatua emango digu (v²/L). Indar inertzialen mailaren garrantzia ρv²L² da, beraz. Bestalde, indar biskosoak fluidoaren biskositatea, μ, eta abiadura-gradientearen, v/L, arteko produktua azalera unitateko (L²) dira, μvL hortaz. Azkenik, bien arteko erlazioak Reynolds zenbakia ematen digu:
edo
non:
Reynolds zenbaki txikietan indar biskosoek gainditzen dute beraz. Egoera honetan fluidoaren mugimendua laminarra da, fluidoaren barneko abiadura ezberdintasunak biskositateak azkar xahutzen baititu, eta muga-geruzaren banantzea errazago gerta daiteke. Aldiz, Re handitu ahala, indar inertzialek garrantzia hartzen dute eta biskositatea ez da nahikoa korrontea egonkortzeko. Situazio honetan turbulentziak sortzen dira. Hodi batean 2000tik behera laminarra izango da eta 4000tik gora turbulentoa.