Kolmion merkillisellä pisteellä tarkoitetaan geometriassa yleensä leikkauspistettä, jossa kolmioon liittyvät kolme samalla tavalla muodostettua suoraa tai janaa leikkaavat toisensa. Jo antiikin Kreikassa tiedettiin kolmion kulmanpuolittajien, korkeusjanojen, keskinormaalien ja keskijanojen muodostavan tällaisia pisteitä, koska kolmion muoto ei vaikuttanut janojen leikkautumiseen eli konkurrenssiin. Myöhemmin merkillisiin pisteisiin löytyi uusia ja varsin mutkikkaitakin tapauksia, joissa niissäkään kolmion muoto ei vaikuta pisteen syntymiseen.
Mikä tahansa kolmion lähellä oleva piste ei ole merkillinen piste. Se tulee voida määrittää sellaisen geometrisen toimenpiteen avulla, joka on mahdollista suorittaa kolmen eri kulman tai sivun funktiona muihin kolmion osiin nähden. Esimerkiksi kolmion painopiste on tämän perusteella merkillinen piste, koska se syntyy leikkauspisteenä jokaisesta kolmion kärjestä vedetystä, vastaisen sivun keskipisteeseen kulkevasta janasta. Toimenpiteen tulee olla myös symmetrinen, eli painopistettä määrittävän keskijanan tulee olla sama vedettiinpä se kärjestä A janalle BC tai kärjestä A janalle CB. Toimenpiteen tulee vielä lopuksi olla homogeeninen, eli yhdenmuotoisten kolmioiden merkilliset pisteet sijaitsevat samassa suhteellisessa paikassa.[1]
<ref>
-elementti; viitettä trilin1213
ei löytynyt