Kontinuumihypoteesi

Kontinuumihypoteesi on Georg Cantorin esittämä väite, joka koskee äärettömien joukkojen kokoja. Cantor esitteli mahtavuuden käsitteen vertaillakseen äärettömien joukkojen kokoja ja osoitti, että kokonaislukujen joukon mahtavuus on pienempi kuin reaalilukujen. Kontinuumihypoteesi on seuraava väite:

Ei ole olemassa joukkoa, jonka mahtavuus on suurempi kuin kokonaislukujen joukon, mutta pienempi kuin reaalilukujen joukon.

Matemaattisessa tekstissä kokonaislukujen mahtavuutta merkitään (luetaan alef-nolla) ja reaalilukujen mahtavuutta merkitään (reaalilukujen joukon mahtavuus on siis sama kuin kokonaislukujen joukon potenssijoukon). Nyt voimme esittää kontinuumihypoteesin seuraavassa muodossa:

Ei ole olemassa joukkoa , siten että .

Tämä väite on yhtäpitävä väitteen kanssa.


Kontinuumihypoteesi

Dodaje.pl - Ogłoszenia lokalne