En algèbre commutative, la profondeur d'un module sur un anneau commutatif anneau est un concept qui intervient notamment dans la définition d'un anneau de Cohen-Macaulay : ce dernier est caractérisé par le fait que pour tout idéal premier de , l'anneau local est de profondeur (en tant que -module) égale à sa dimension de Krull, au sens des définitions données ci-dessous.