Artikel atau bagian artikel ini diterjemahkan secara buruk. |
Artikel atau bagian dari artikel ini diterjemahkan dari Coset di en.wikipedia.org. Terjemahannya masih terlalu kaku, kemungkinan besar karena kalimat Inggrisnya diterjemahkan kata-per-kata. Maka dari itu, terjemahan di artikel ini masih memerlukan penyempurnaan. Pengguna yang mahir dengan bahasa yang bersangkutan dipersilakan untuk menelusuri referensinya dan menyempurnakan terjemahan ini, atau Anda juga dapat ikut bergotong royong dalam ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel) |
Dalam matematika, khususnya teori grup, subgrup H dari grup G dapat digunakan untuk mendekomposisi himpunan yang mendasari G menjadi disjoint sama- potongan ukuran yang disebut kohimpunan. Ada dua jenis koset: kohimpunan kiri dan kohimpunan kanan. Kohimpunan (dari kedua jenis) memiliki jumlah elemen yang sama (kardinalitas) seperti halnya H. Lebih lanjut, H itu sendiri adalah kohimpunan, yang merupakan koset kiri dan kohimpunan kanan. Jumlah koset kiri H di G sama dengan jumlah koset kanan dari H di G. Nilai yang sama disebut indeks dari H dalam bahasa G dan biasanya dilambangkan dengan [G : H].
Kohimpunan adalah alat dasar dalam mempelajari grup; misalnya, mereka memainkan peran sentral dalam Teorema Lagrange yang menyatakan bahwa untuk grup hingga G, jumlah elemen dari setiap subgrup H dari G membagi jumlah elemen G. Koset dari jenis subgrup tertentu (subgrup normal) dapat digunakan sebagai elemen dari grup lain yang disebut grup hasil bagi atau grup faktor. Kohimpunan juga muncul di bidang matematika lain seperti ruang vektor dan kode koreksi kesalahan.