Kohimpunan

G adalah grup (/8, +), integers mod 8 sebagai tambahan. Subgrup H hanya berisi 0 dan 4. Ada empat koset kiri dari H: H itself, 1 + H, 2 + H, dan 3 + H (ditulis menggunakan notasi aditif karena ini adalah grup aditif). Bersama-sama mereka mempartisi seluruh grup G menjadi set yang berukuran sama dan tidak tumpang tindih. indeks[G : H] is 4.

Dalam matematika, khususnya teori grup, subgrup H dari grup G dapat digunakan untuk mendekomposisi himpunan yang mendasari G menjadi disjoint sama- potongan ukuran yang disebut kohimpunan. Ada dua jenis koset: kohimpunan kiri dan kohimpunan kanan. Kohimpunan (dari kedua jenis) memiliki jumlah elemen yang sama (kardinalitas) seperti halnya H. Lebih lanjut, H itu sendiri adalah kohimpunan, yang merupakan koset kiri dan kohimpunan kanan. Jumlah koset kiri H di G sama dengan jumlah koset kanan dari H di G. Nilai yang sama disebut indeks dari H dalam bahasa G dan biasanya dilambangkan dengan [G : H].

Kohimpunan adalah alat dasar dalam mempelajari grup; misalnya, mereka memainkan peran sentral dalam Teorema Lagrange yang menyatakan bahwa untuk grup hingga G, jumlah elemen dari setiap subgrup H dari G membagi jumlah elemen G. Koset dari jenis subgrup tertentu (subgrup normal) dapat digunakan sebagai elemen dari grup lain yang disebut grup hasil bagi atau grup faktor. Kohimpunan juga muncul di bidang matematika lain seperti ruang vektor dan kode koreksi kesalahan.


Kohimpunan

Dodaje.pl - Ogłoszenia lokalne