Sejarah matematika

Halaman dari Buku Ikhtisar Perhitungan dengan Penyelesaian dan Perimbangan karya Muḥammad bin Mūsā al-Khawārizmī (sekitar 820 Masehi)

Cabang pengkajian yang dikenal sebagai sejarah matematika adalah penyelidikan terhadap asal mula penemuan di dalam matematika dan sedikit perluasannya, penyelidikan terhadap metode dan notasi matematika pada masa silam.

Sebelum zaman modern dan penyebaran ilmu pengetahuan ke seluruh dunia, contoh-contoh tertulis dari pengembangan matematika telah mengalami kemilau hanya di beberapa tempat. Tulisan matematika terkuno yang telah ditemukan adalah Plimpton 322 (matematika Babilonia sekitar 1900 SM),[1] Lembaran Matematika Rhind (Matematika Mesir sekitar 2000-1800 SM)[2] dan Lembaran Matematika Moskwa (matematika Mesir sekitar 1890 SM). Semua tulisan itu membahas teorema yang umum dikenal sebagai teorema Pythagoras, yang tampaknya menjadi pengembangan matematika tertua dan paling tersebar luas setelah aritmetika dasar dan geometri.

Sumbangan matematikawan Yunani memurnikan metode-metode (khususnya melalui pengenalan penalaran deduktif dan kekakuan matematika di dalam pembuktian matematika) dan perluasan pokok bahasan matematika.[3] Kata "matematika" itu sendiri diturunkan dari kata Yunani kuno, μάθημα (mathema), yang berarti "mata pelajaran".[4] Matematika Cina membuat sumbangan dini, termasuk notasi posisional. Sistem bilangan Hindu-Arab dan aturan penggunaan operasinya, digunakan hingga kini, mungkin dikembangakan melalui kuliah pada milenium pertama Masehi di dalam matematika India dan telah diteruskan ke Barat melalui matematika Islam.[5][6] Matematika Islam, pada gilirannya, mengembangkan dan memperluas pengetahuan matematika ke peradaban ini.[7] Banyak naskah berbahasa Yunani dan Arab tentang matematika kemudian diterjemahkan ke dalam bahasa Latin, yang mengarah pada pengembangan matematika lebih jauh lagi di Zaman Pertengahan Eropa.

Dari zaman kuno melalui Zaman Pertengahan, ledakan kreativitas matematika sering kali diikuti oleh abad-abad kemandekan. Bermula pada abad Renaisans Italia pada abad ke-16, pengembangan matematika baru, berinteraksi dengan penemuan ilmiah baru, dibuat pada pertumbuhan eksponensial yang berlanjut hingga kini.

  1. ^ J. Friberg, "Methods and traditions of Babylonian mathematics. Plimpton 322, Pythagorean triples, and the Babylonian triangle parameter equations", Historia Mathematica, 8, 1981, pp. 277—318.
  2. ^ O. Neugebauer, "The Exact Sciences in Antiquity", Chap. IV "Egyptian Mathematics and Astronomy", 2nd ed., Dover, New York, 1969, pp. 71—96.
  3. ^ Sir Thomas L. Heath, A Manual of Greek Mathematics, Dover, 1963, p. 1: "In the case of mathematics, it is the Greek contribution which it is most essential to know, for it was the Greeks who first made mathematics a science."
  4. ^ Heath. A Manual of Greek Mathematics. hlm. 5. 
  5. ^ Robert Kaplan, "The Nothing That Is: A Natural History of Zero", Allen Lane/The Penguin Press, London, 1999
  6. ^ "The ingenious method of expressing every possible number using a set of ten symbols (each symbol having a place value and an absolute value) emerged in India. The idea seems so simple nowadays that its significance and profound importance is no longer appreciated. Its simplicity lies in the way it facilitated calculation and placed arithmetic foremost amongst useful inventions. the importance of this invention is more readily appreciated when one considers that it was beyond the two greatest men of Antiquity, Archimedes and Apollonius." - Pierre Simon Laplace http://www-history.mcs.st-and.ac.uk/HistTopics/Indian_numerals.html
  7. ^ A.P. Juschkewitsch, "Geschichte der Mathematik im Mittelalter", Teubner, Leipzig, 1964

Sejarah matematika

Dodaje.pl - Ogłoszenia lokalne