Algebra omologica

L'algebra omologica è la branca della matematica che studia i metodi dell'omologia e della coomologia da un punto di vista generale. Questi concetti sono nati nell'ambito della topologia algebrica.

Le teorie di coomologia sono state definite per vari oggetti matematici quali spazi topologici, fasci, gruppi, anelli, algebre di Lie e C*algebre. Anche lo studio della moderna geometria algebrica non può fare a meno della coomologia dei fasci.

Centrale per l'algebra omologica è la nozione di successione esatta; questi sono gli oggetti attualmente utilizzati per effettuare i calcoli. Un altro genere di strumento classico dell'algebra omologica è il funtore derivato; gli esempi basilari di questi funtori sono Ext e Tor.


Algebra omologica

Dodaje.pl - Ogłoszenia lokalne