In matematica, in particolare in teoria dell'omologia e in topologia algebrica, coomologia è un termine generale per indicare una successione di gruppi abeliani associati a uno spazio topologico, spesso definiti da un complesso di cocatene. La coomologia può essere vista come un metodo per assegnare a uno spazio topologico invarianti algebrici più ricchi rispetto all'omologia. Alcune versioni della coomologia nascono da un dualismo con la costruzione omologica. In altre parole, le cocatene sono funzioni sul gruppo delle catene della teoria omologica.
Dopo la sua nascita in ambito topologico, il concetto di coomologia è diventato un elemento fondamentale della matematica nella seconda metà del ventesimo secolo. Dall'idea iniziale di omologia come metodo per costruire invarianti algebrici di spazi topologici, il numero di applicazioni delle teorie dell'omologia e della coomologia si è ampliata sia in geometria che in algebra. La terminologia tende a nascondere il fatto che, in molte applicazioni, la coomologia, una teoria controvariante, è più naturale dell'omologia. Questo ha a che fare con funzioni e pullback in ambito geometrico: dati due spazi e e una funzione su per qualsiasi mappa la composizione con dà origine a una funzione su Le teorie della coomologia più importanti hanno un prodotto, il prodotto cup, che conferisce loro una struttura di anello. A causa di questa caratteristica, la coomologia è solitamente un invariante più forte dell'omologia.