Differenziale (matematica)

In matematica, in particolare nel calcolo infinitesimale, il differenziale di una funzione quantifica la variazione infinitesimale della funzione rispetto ad una variabile indipendente. Per una funzione di una sola variabile , per esempio, il differenziale di è definito dalla 1-forma:

dove denota la derivata di rispetto a , ovvero il limite del rapporto incrementale per indefinitamente piccolo, e l'incremento della variabile indipendente.

Se si considera una funzione derivabile, con aperto in , essa può essere approssimata in un intorno di un qualsiasi punto del dominio mediante la funzione

il cui grafico è la retta tangente al grafico di in . La funzione è un'applicazione affine da in sé, cioè un'applicazione lineare sulla distanza da composta con una traslazione (l'aggiunta del termine ). Il differenziale è allora la parte lineare di .

Le derivate direzionali di una funzione indicano di quanto varia la funzione al primo ordine lungo un determinato vettore, mentre il differenziale è l'applicazione lineare che associa a quel vettore la variazione al primo ordine. Si tratta pertanto di un oggetto utile per avere informazioni locali sulla funzione di partenza, ad esempio mostra se è localmente invertibile.


Differenziale (matematica)

Dodaje.pl - Ogłoszenia lokalne