Ipotesi di Riemann

Parte reale (in rosso) e immaginaria (in blu) dei valori assunti dalla funzione zeta lungo la linea critica Si possono notare i primi zeri non banali in

In matematica, più precisamente in teoria analitica dei numeri, l'ipotesi di Riemann o congettura di Riemann è una congettura sulla distribuzione degli zeri non banali della funzione zeta di Riemann. La sua importanza deriva dalle conseguenze che ha sulla distribuzione dei numeri primi.

Dall'equazione funzionale discende che la funzione zeta di Riemann ζ(s) ha zeri, detti banali, negli interi pari negativi, (s = −2, −4, −6 e così via). La congettura di Riemann riguarda invece gli zeri non banali e afferma che

«La parte reale di ogni radice non banale è 1/2.»

In altre parole, le radici non banali dovrebbero trovarsi tutte sulla retta descritta dall'equazione s = 1/2 + it (la cosiddetta "retta critica", indicata come critical line in Fig. 3) con t numero reale e i unità immaginaria.


Ipotesi di Riemann

Dodaje.pl - Ogłoszenia lokalne