In matematica, una serie è la somma degli elementi di una successione, appartenenti in generale ad uno spazio vettoriale topologico. Si tratta di una generalizzazione dell'operazione di addizione, che può essere in tal modo estesa al caso in cui partecipano infiniti termini (la particolarità della serie è che essa può convergere oltre che divergere nonostante si tratti di una somma di infiniti termini).
Le serie si distinguono primariamente in base alla natura degli oggetti che vengono sommati, che possono essere ad esempio numeri (reali o complessi) o funzioni, ma si utilizzano anche serie formali di potenze, serie di vettori, di matrici e, più in astratto, di operatori. Nell'ambito della teoria dei linguaggi formali vi sono le serie di variabili non commutative, cioè serie di stringhe.
Tra le serie di particolare interesse vi è la serie aritmetica, caratterizzata dal fatto che la differenza tra ciascun termine e il suo precedente è una costante, e la serie geometrica, in cui il rapporto tra ciascun termine e il suo precedente è una funzione costante. Nel caso più generale, in cui il rapporto fra termini successivi è una funzione razionale, la serie è detta ipergeometrica.
Di particolare importanza in analisi complessa sono le serie di funzioni che sono serie di potenze, come la serie geometrica e la serie di Taylor. Le serie di funzioni costituiscono inoltre efficaci strumenti per lo studio delle funzioni speciali e per la risoluzione di equazioni differenziali.